Cite this article as:

Krylova E. Y., Papkova I. V., Yakovleva T. V., Krysko V. A. Theory of Vibrations of Carbon Nanotubes Like Flexible Micropolar Mesh Cylindrical Shells Taking into Account Shift. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2019, vol. 19, iss. 3, pp. 305-316. DOI: https://doi.org/10.18500/1816-9791-2019-19-3-305-316


Published online: 
31.08.2019
Language: 
Russian
Heading: 
UDC: 
539.3

Theory of Vibrations of Carbon Nanotubes Like Flexible Micropolar Mesh Cylindrical Shells Taking into Account Shift

Abstract: 

A theory of nonlinear dynamics of a flexible single-layer micropolar cylindrical shell of a network structure is constructed. The geometric nonlinearity is taken into account by the model of Theodor von Karman. We consider a nonclassical continuum shell model based on the Cosserat medium with constrained particle rotation (pseudocontinuum). It is assumed that the displacement and rotation fields are not independent. An additional independent material length parameter associated with the symmetric tensor of the rotation gradient is introduced into consideration. The equations of motion of the shell element, boundary and initial conditions are obtained from the variational principle of Ostrogradskii–Hamilton on the basis of kinematic hypotheses of the third approximation (Peleha–Sheremetyev–Reddy), allowing to take into account not only the rotation, but also the curvature of the normal after deformation. It is assumed that the cylindrical shell con-
sists of n families of edges, each of which is characterized by an inclination angle with respect to the positive direction of the axis directed along the length of the shell and the distance between neighboring edges. The shell material is isotropic, elastic, and obeys Hooke’s law. A dissipative mechanical system is considered. As a special case, the system of equations of motion for Kirchhoff–Love’s micro-polar reticulated shell is presented. The theory constructed in this paper can be used, among other things, for studying the behavior of CNTs under the action of static and dynamic loads.

References

1. Belostochny G. N., Myltcina O. A. The Geometrical Irregular Plates under the Influence of the Quick Changed on the Time Coordinate Forces and Temperature Effects. Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 4, pp. 442–451 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2015-15-4-442-451
2. Krylova E. Y., Yakovleva T. V., Bazhenov V. G. The influence of the noise field on parametric oscillations of flexible square plates // Russian Aeronautics. 2017. Vol. 60, № 2. P. 177–183. DOI: https://doi.org/10.3103/S1068799817020039
3. Krylova E. Y., Papkova I. V., Erofeev N. P., Zakharov V. M., Krysko V. A. Complex fluctuations of flexible plates under longitudinal loads with account for white noise // Journal of Applied Mechanics and Technical Physics. 2016. Vol. 57, № 4. P. 714–719. DOI: https://doi.org/10.1134/S0021894416040167
4. Awrejcewicz J., Krysko A. V., Krysko V. A., Krylova E. Yu. Turbulent phenomena in flexible plates and shells // Springer Proceedings in Mathematics and Statistics. 2014. № 12. P. 49–76. DOI: https://doi.org/10.1007/978-3-319-08266-0-5
5. Krysko A. V., Awrejcewicz J., Zhigalov M. V., Pavlov S. P, Krysko V. A. Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1. Governing equations and static analysis of flexible beams // International Journal of Non-Linear Mechanics. 2017. № 93. P. 96–105.
6. Krysko A. V., Awrejcewicz J., Zhigalov M. V.,Pavlov S. P, Krysko V. A. Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 2. Chaotic dynamics of flexible beams // International Journal of Non-Linear Mechanics. 2017. № 93 P. 106–212.
7. Zhou X., Wang L. Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory // Micro and Nano Letters. 2012. Vol. 7, iss. 7. P. 679—684. DOI: https://doi.org/10.1049/mnl.2012.0184
8. Safarpour H., Mohammadi K., Ghadiri M. Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution // Journal of the Mechanical Behavior of Materials. 2017. Vol. 26, iss. 1—2. P. 9—24. DOI: https://doi.org/10.1515/jmbm-2017-0010
9. Sahmani S., Ansari R., Gholami R., Darvizeh A. Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory // Composites : Part B. 2013. Vol. 51. P. 44–53. DOI: https://doi.org/10.1016/j.compositesb.2013.02.037
10. Majeed A., Zeeshan A., Mubbashir S. Vibration analysis of carbon nanotubes based on cylindrical shell by inducting Winkler and Pasternak foundations // Mechanics of Advanced Materials and Structures. 2018. P. 1140–1145. DOI: https://doi.org/10.1080/15376494.2018.1430282
11. Hussain M., Naeem M. N., Shahzad A., He M. Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach // IP Advances. 2017. Vol. 7, iss. 4, 045114. DOI: https://doi.org/10.1063/1.4979112
12. Ninh D. G., Bich D. H. Characteristics of nonlinear vibration of nanocomposite cylindrical shells with piezoelectric actuators under thermo-mechanical loads // Aerospace Science and Technology. 2018. Vol. 77. P. 305—312. DOI: https://doi.org/10.1016/j.ast.2018.04.008.

13. Peddieson J., Buchanan R., McNitt R. P. Application of nonlocal continuum models to nanotechnology // Int. J. Eng. Sci. 2003. Vol. 41. P. 595—609. DOI: https://doi.org/10.1016/S0020-7225(02)00210-0
14. Bazehhour B. G., Mousavi S. M., Farshidianfar A. Free vibration of high-speed rotating Timoshenko shaft with various boundary conditions: effect of centrifugally induced axial force // Archive of Applied Mechanics. 2014. Vol. 84, № 12. P. 1691—1700. DOI: https://doi.org/10.1007/s00419-013-0762-5
15. Karlicic D., Kozic P., Pavlovic R. Flexural vibration and buckling analysis of single- walled carbon nanotubes using different gradient elasticity theories based on reddy and huu-tai formulations // Journal of Theoretical and Applied Mechanics. 2015. Vol. 51, № 1. P. 217—233. DOI: https://doi.org/10.15632/jtam-pl.53.1.217
16. Ivanova E. A., Morozov N. F., Semenov B. N., Firsova A. D. Determination of elastic moduli of nanostructures: theoretical estimates and experimental techniques. Mech. Solids, 2005, vol. 40, no. 4, pp. 60–68 (in Russian).
17. Daneshmand F., Rafiei M., Mohebpour S. R., Heshmati M. Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory // Appl. Math. Modelling. 2013. Vol. 37, № 16–17. P. 7983– 8003. DOI: https://doi.org/10.1016/j.apm.2013.01.052
18. Erofeev V. I. Volnovye protsessy v tverdykh telakh s mikrostrukturoj [Wave processes in solids with a microstructure]. Moscow, Moscow Univ. Press, 1999. 328 p. (in Russian).
19. Оstrоgradskу M. Mémoires de l’Académie impériale des sciences de St. Petersbourg. 1850.
Vol. 8, № 3. P. 33–48.
20. Hamilton W. Report of the Fourth Meeting of the British Association for the Advancement of Science. L., 1835.
21. Sun C. T., Zhang Y. Sizeedependent elastic moduli of platelike nanomaterials // J. Appl. Phys. 2003. Vol. 3. P. 1212–1218.
22. Krylova E. Yu., Papkova I. V., Saltykov O. A., Sinichkina A. O., Krysko V. A. Mathematical model of vibrations of the cylindrical shells, which are dimensionally depen- dent with the net structure, taking into account the Kirchhoff–Love hypotheses. Nelineinyi mir [Nonlinear World], 2018, vol. 16, no. 4. pp. 17–28 (in Russian). DOI: https://doi.org/10.18127/j20700970-201804-03

23. Pshenichnov G. I. Teoriya tonkikh uprugikh setchatykh obolochek i plastinok [Theory of thin elastic mesh shells and plates]. Moscow, Nauka, 1982. 352 p. (in Russian).

Full text: