Cite this article as:
Mukhomodyarov R. R. Wave Propagation in Fibre-Reinforced Cylinders. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2010, vol. 10, iss. 1, pp. 58-62. DOI: https://doi.org/10.18500/1816-9791-2010-10-1-58-62
Wave Propagation in Fibre-Reinforced Cylinders
Non-stationary wave propagation in cylindrical composite shell is considered. The shell consists of isotropic matrix reinforced by two families of symmetrically wound spiral fibres. These families have the same mechanical properties and the cylinder is considered to be incompressible. Solutions of coupled equations of motion are represented in the form of Frobenius power series. Approximate dispersion relation derived is analyzed numerically for different shell thicknesses and fibre winding angles.
1. Gazis D.C. Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical Foundation // J. Acoust. Soc. Amer. 1959. № 31. P. 568–573.
2. Коссович Л.Ю. Нестационарные задачи теории упругих тонких оболочек. Саратов: Изд-во Сарат. ун-та, 1986. 176 с.
3. Мехтиев М.Ф., Фомина Н.И. Свободные колебания трансверсально-изотропного полого цилиндра // Механика композит. материалов. 2002. Т.38, №1. С.81–98.
4. Mirsky I. Axisymmetric vibration of orthotropic cylinders // J. Acoust. Soc. Amer. 1964. № 36. P. 2106– 2112.
5. Ohnabe H., Nowinski J. L. On the propagation of flexural waves in anisotropic bars // Ing.-Archiv. 1971. № 40. P. 327–338.
6. Shuvalov A.L. The frobenius power series solution for cylindrically anisotropic radially inhomogeneous elastic materials // J. Mech. Appl. Math. 2003. 56(3). P. 327– 345.
7. Spencer A. J. M. Deformations of fibre-reinforced materials. Oxford: ClarendonPress, 1972.
8. Nayfeh A. H. The general problem of elastic wave propagation in multilayered anisotropic media // J. Acoust. Soc. Amer. 1991. № 89. P. 1521–1526.