algorithm.

An Optimal System Constructing Algorithm for Symmetry Algebra of Three-Dimensional Equations ofthe Perfect Plasticity

The present study is devoted to study of a natural 12-dimensional symmetry algebra of the three-dimensional hyperbolic differential equations of the perfect plasticity, obtained by D.D. Ivlev in 1959 and formulated in isostatic co-ordinate net. An optimal system of onedimensional subalgebras constructing algorithm for the Lie algebra is proposed. The optimal system (total 187 elements) is shown consist of a 3-parametrical element, twelve 2-parametrical elements, sixty six 1-parametrical elements and one hundred and eight individual elements.