форма

Invariants on a Set of Reciprocal Iterated Exponential Power Coefficients

A chain exponent LB(z) = z · B(z),  having a power sequence {bn}n=1, bn ≠ 0, n = 1,2,..., lim n→∞ |bn| < ∞, is defined by a function sequence B(z) = eb1·z·B1(z), B1(z) = eb2·z·B2(z), . . . , Bk−1(z) = ebk·z·Bk(z),. . . (we use the denotation B(z) = ‹ez;b1,b2,...› in the paper).