space debris

Descent of Nanosatellite from Low Earth Orbit by Ion Beam

The work is devoted to the problem of contactless CubSat3U nanosatellites removal from low Earth orbit bymean sof anion beam, which is created by the engine of an active spacecraft. The advant age of this methodis that there is no needfor additional mean sof dockingand gripping. A mathematical model of the nanosatellite plane motion under the action of the ion beam and gravitational forces is developed. Two approaches are used to simulate the ion beam impacton nano satellite.The first one involves the use of known dimensionless aerodynamic coefficients.

Equilibrium Analysis of the Tethered Tug Debris System with Fuel Residuals

The problem of tethered transportation of space debris is considered. The system consists of orbit tug, tether, and passive spacecraft with fuel residuals. The planar motion on circular orbit is studied in the orbital frame. Nonlinear motion equations are obtained by Lagrangian formalism. They consider action of the space tug-thrust and gravitational moments. Two variants of stable positions of relative equilibrium are defined. They depend on main parameters of the tethered system: aspect ratio and mass ratio.