Cite this article as:

Avramenko A. A., Aslanov V. S. Equilibrium Analysis of the Tethered Tug Debris System with Fuel Residuals. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2018, vol. 18, iss. 3, pp. 334-346. DOI: https://doi.org/10.18500/1816-9791-2018-18-3-334-346


Language: 
Russian
Heading: 
UDC: 
531.396;629.78

Equilibrium Analysis of the Tethered Tug Debris System with Fuel Residuals

Abstract: 

The problem of tethered transportation of space debris is considered. The system consists of orbit tug, tether, and passive spacecraft with fuel residuals. The planar motion on circular orbit is studied in the orbital frame. Nonlinear motion equations are obtained by Lagrangian formalism. They consider action of the space tug-thrust and gravitational moments. Two variants of stable positions of relative equilibrium are defined. They depend on main parameters of the tethered system: aspect ratio and mass ratio. The equations of the first approximation for the each of the stable position variants are obtained. Their coefficients analysis give evidence of approachment all of the natural frequency of the system and permit to find corresponding conditions. The results of numerical simulation of the motion of the tethered system and their comparison with small oscillations determined by are presented. Proposed equations can be used to analyze the attitude motion of the tug–debris system and todeter mine the conventional parameters for safe tethered transportation of space debris.

References

1. Beletsky V. V., Levin E. M. Dynamics of Space Tether Systems. Vol. 83: Advances in the Astronautical Sciences. American Astronautical Society, 1993. 500 p. (Russ. ed.: Moscow, Nauka, 1990. 329 p.)

2. Aslanov V. S., Ledkov A. S. Dynamics of the Tethered Satellite Systems. Elsevier, 2012. 350 p.

3. Alpatov A. P., Beletsky V. V., Dranovsky V. I.,Zakrzhevsky A. E., Pirozhenko A.V., Troger G., Khoroshilov V. S. Dinamika kosmicheskikh sistem s trosovymi i sharnirnymi soedineniiami [Dynamics of Space Systems Joined by Tethers and Hings]. Moscow, Izhevsk, Research center “Regular and Chaotic Dynamics“, Institute of Computer Science, 2007. 560 p. (in Russian)

4. Aslanov V. S. Oscillations of the Body with Orbit Tethered System. J. Appl. Math. Mech., 2007, vol. 71, iss. 6, pp. 1027–1033.

5. Aslanov V. S., Yudintsev V. V. Dynamics, Analytical Solutions and Choice of Parameters for Towed Space Debris with Flexible Appendages. Advances in Space Research, 2015, vol. 55, pp. 660–667. DOI: https://doi.org/10.1016/j.asr.2014.10.034

6. Williams P., Hyslop A., Stelzer M., Kruijff M. YYES2 optimal trajectories in presence of eccentricity and aerodynamic drag. Acta Astronautica, 2009, vol. 64, iss. 7–8, pp. 745– 769. DOI: https://doi.org/10.1016/j.actaastro.2008.11.007

7. Bonnal C., Ruault J.-M., Desjean M.-C. Active debris removal: Recent progress and current trends. Acta Astronautica, 2013, vol. 85, pp. 51–60. DOI: https://doi.org/10.1016/j.actaastro.2012.11.009

8. Jasper L., Schaub H. Input Shaped Large Thrust Maneuver with a Tethered Debris Object. Acta Astronautica, 2014, vol. 96, pp. 128–137. DOI: https://doi.org/10.1016/j.actaastro. 2013.11.005

9. Jasper L., Schaub H. Tethered Towing Using Open-Loop Input- Shaping and Discrete Thrust Levels. Acta Astronautica, 2014, vol. 105, iss. 1, pp. 373–384. DOI: https://doi.org/10.1016/j.actaastro.2014.10.001

10. Kitamura S., Hayakawa Y., Kawamoto S. A reorbiter for large GEO debris objects using ion beam irradiation. Acta Astronautica, 2014, vol. 94, iss. 2, pp. 725–735. DOI: https://doi.org/10.1016/j.actaastro.2013.07.037

11. Reyhanoglu M., Rubio Hervas J. Nonlinear dynamics and control of space vehicles with multiple fuel slosh modes. Control Eng. Pract., 2012, vol. 20, iss. 9, pp. 912–918. DOI: https://doi.org/10.1016/j.conengprac.2012.05.011

12. Rubio Hervas J., Reyhanoglu M. Thrust-vector control of a threeaxis stabilized upperstage rocket with fuel slosh dynamics. Acta Astronautica, 2014, vol. 98, pp. 120–127. DOI: https://doi.org/10.1016/j.actaastro.2014.01.022

13. Kupreev S. A. The conditions of existence of limit cycles in dynamic motion system of related objects on an elliptical orbit. Electronic journal „Trudy MAI“, 2016, no. 88. Available at: http://www.trudymai.ru/eng/published.php?ID=69696&eng=Y (accessed 18 May 2018).

14. Markeev A. P. Teoreticheskaya mekhanika : uchebnik dlya universitetov [Theoretical Mechanics: A Textbook for Universities]. Moscow, CheRho, 1999. 572 p. (in Russian).

15. Mikishev G. N., Rabinovitch B. I. Dynamics of the solid body with cavities partially filled the liquid. Moscow, Mashinostroenie, 1968. 532 p. (in Russian).

16. Korn G., Korn T. Mathematical Handbook for scientists and engineers. New York, San Francisco, Toronto, London, Sydney, McGraw-Hill Book Company, 1968. 1130 p. DOI: https://doi.org/10.1002/zamm.19690490921 (Russ. ed.: Moscow, Nauka, 1978. 720 p.)

Short text (in English): 
Full text: