Cite this article as:

Poplavskii V. B. Overtones of Oscillatory Boolean Matrices. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2006, vol. 6, iss. 1, pp. 29-37. DOI: https://doi.org/10.18500/1816-9791-2006-6-1-2-29-37


Language: 
Russian
Heading: 
UDC: 
512.56

Overtones of Oscillatory Boolean Matrices

Abstract: 

We consider a functioning property of a system with a finite set of elements and with different kinds of Boolean binary relations on it. We also construct the square matrices over arbitrary Boolean algebra which determine some Boolean binary relation and generate a cyclic semigroup with the maximum index and period. The looping of the system with a finite set of elements called an oscillator, is accompanied by appearing of subsequences (overtones) in a sequence of elements on the main diagonal of powers of a relevant Boolean matrix. Examples of such overtones of Boolean matrices of small sizes are shown in the paper. 

Key words: 
References

1. Luce R.D. A note on Boolean matrix theory // Proc. Ammer Math. Soc. 1952. V. 3. P.382–388.

2. Give’on Y. Lattice matrices // Inform. And Control. 1964. V. 7, № 4. P. 477–484

3. Kim Ki Hang. Boolean matrix theory and applications. Pure and Applied Mathematics, 70. N. Y.; Basel: Marcel Dekker, Inc., 1982. xiv+ 425 p.

4. Rosenblatt D. On the graphs and asymptotic forms of finite Boolean relation matrices and stochastic matrices // Naval Res. Logist. Quart. 1957. V. 4. P. 151–167.

5. Li Q., Shao J. The index set problem for Boolean (or nonnegative) matrices // Discrete Math. 1993. V. 123, №1–3. P. 75–92.

6. Клиффорд А., Престон Г. Алгебраическая теория полугрупп. M.: Мир, 1972. Т. 1. 286 с.

7. Лаллеман Ж. Полугруппы и комбинаторные приложения. М.: Мир, 1985. 440 с.

8. Hammer P. L., Rudeanu S. Boolean methods in operations research and related areas. Berlin; N. Y.; Springer, 1968. xix+ 329 p.

9. Лунц А.Г. Приложение матричной булевской алгебры к анализу и синтезу релейно-контактных схем // Докл. АН СССР. 1950. Т. 70, №3. С. 421–423.

10. Rutherford D.E. Inverses of Boolean matrices // Proc. Glasg. Math. Assoc. 1963. V. 6. P. 49–53.

11. Wedderburn J.H.M. Boolean linear associative algebra // Ann. of Math. 1934. V. 35. P. 185–194.

12. Schwarz S. On the semigroup of binary relations on a finite set // Czech. Math. J. 1970. V. 20(95). P. 632–679.

13. Wielandt H. Unzerlegbare, nichnegativen Matrizen//Math. Z. 1950. V. 52. P. 642–648.

14. Gregory D.A., Kirkland S.J., Pullmang N.J. A bound on the exponent of a primitive matrix using Boolean rank // Linear Algebra Appl. 1995. V. 217. P. 101–116.

15. Поплавский В.Б. Определители степеней булевых матриц // Чебышевcкий сборник: Труды VI Междунар. конф. «Алгебра и теория чисел: современные проблемы и приложения». 2004. Т. 5, вып. 3(11). С. 98–111.

Full text: