Cite this article as:
Vodolasov A. M., Lukomskii S. F. Orthogonal Shift Systems in the Field of p-adic Numbers. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 3, pp. 256-262. DOI: https://doi.org/10.18500/1816-9791-2016-16-3-256-262
Orthogonal Shift Systems in the Field of p-adic Numbers
In 2010 S. Albeverio, S. Evdokimov and M. Skopina proved that if the shift system (ϕ(x−˙ h)) of a step function ϕ is orthonormal and ϕ generates p-adic MRA then its Fourier transform lies in the unit ball. We prove then in some cases the condition "ϕ generates MRA" is possible to be omitted. In general, we indicate the number of linearly independent step-functions, which shifts form an orthonormal system.
1. Lang W. C. Orthogonal Wavelets on the Cantor Dyadic Group // SIAM J. Math. Anal. 1996. Vol. 27, iss. 1. P. 305–312. DOI: https://doi.org/10.1137/S0036141093248049.
2. Lang W. C. Wavelet analysis on the Cantor dyadic group // Housten J. Math. 1998. Vol. 24, № 3. P. 533–544.
3. Lang W. C. Fractal multiwavelets related to the Cantor dyadic group // Intern. J. Math. Math. Sci. 1998. Vol. 21, iss. 2. P. 307–314. DOI: https://doi.org/10.1155/S0161171298000428.
4. Protasov V. Yu., Farkov Yu. A. Dyadic wavelets and refinable functions on a half-line // Sb. Math. 2006. Vol. 197, № 10. P. 1529–1558. DOI: https://doi.org/10.1070/SM2006v197n10ABEH003811.
5. Farkov Yu. A. Orthogonal wavelets with compact support on locally compact Abelian groups. Izv. Math., 2005, vol. 69, iss. 3, pp. 623–650. DOI: https://doi.org/10.1070/IM2005v069n03ABEH000540.
6. Farkov Yu. A. Orthogonal wavelets on direct products of cyclic. Math. Notes, 2007, vol. 82, iss. 5, pp. 843–859. DOI: https://doi.org/10.1134/S0001434607110296.
7. Lukomskii S. F. Step refinable functions and orthogonal MRA on Vilenkin groups // J. Fourier Anal. Appl. 2014. Vol. 20, iss. 1. P. 42–65. DOI: https://doi.org/10.1007/s00041-013-9301-6.
8. Khrennikov A. Yu., Shelkovich V. M., Skopina M. p-adic refinable functions and MRA-based wavelets // J. Approx. Theory. 2009. Vol. 161, iss. 1. P. 226–238. DOI: https://doi.org/10.1016/j.jat.2008.08.008.
9. Albeverio S., Evdokimov S., Skopina M. p-Adic Multiresolution Analysis and Wavelet Frames // J. Fourier Anal. Appl. 2010. Vol. 16, iss. 5. P. 693–714. DOI: https://doi.org/10.1007/s00041-009-9118-5.