Образец для цитирования:

Водолазов А. М., Лукомский С. Ф. Ортогональные системы сдвигов в поле p-адических чисел // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2016. Т. 16, вып. 3. С. 256-262. DOI: https://doi.org/10.18500/1816-9791-2016-16-3-256-262


Опубликована онлайн: 
03.10.2016
Язык публикации: 
русский
Рубрика: 
УДК: 
517.51

Ортогональные системы сдвигов в поле p-адических чисел

Аннотация: 

В 2010 г. S. Albeverio, С. Евдокимов и М. Скопина доказали, что если система сдвигов (ϕ(x−˙ h)) ступенчатой функции ϕ ортонормирована, функция ϕ порождает ортогональный p-адический кратно масштабный анализ (КМА), то носитель ее преобразования Фурье лежит в единичном шаре. Мы доказываем, что в некоторых случаях требование «ϕ порождает КМА» можно опустить. В общем случае мы указываем количество линейно независимых ступенчатых функций, сдвиги которых образуют ортонормированную систему.

Библиографический список

1. Lang W. C. Orthogonal Wavelets on the Cantor Dyadic Group // SIAM J. Math. Anal. 1996. Vol. 27, iss. 1. P. 305–312. DOI: https://doi.org/10.1137/S0036141093248049.

2. Lang W. C. Wavelet analysis on the Cantor dyadic group // Housten J. Math. 1998. Vol. 24, № 3. P. 533–544.

3. Lang W. C. Fractal multiwavelets related to the Cantor dyadic group // Intern. J. Math. Math. Sci. 1998. Vol. 21, iss. 2. P. 307–314. DOI: https://doi.org/10.1155/S0161171298000428.

4. Protasov V. Yu., Farkov Yu. A. Dyadic wavelets and refinable functions on a half-line // Sb. Math. 2006. Vol. 197, № 10. P. 1529–1558. DOI: https://doi.org/10.1070/SM2006v197n10ABEH003811.

5. Фарков Ю. А. Ортогональные вейвлеты с компактными носителями на локально компактных абелевых группах // Изв. РАН. Cер. матем. 2005. Т. 69, вып. 3. С. 193–220. DOI: https://doi.org/10.4213/im644.

6. Фарков Ю. А. Ортогональные вейвлеты на прямых произведениях циклических групп // Матем. заметки. 2007. Т. 82, вып. 6. С. 934–952. DOI: https://doi.org/10.4213/mzm4181.

7. Lukomskii S. F. Step refinable functions and orthogonal MRA on Vilenkin groups // J. Fourier Anal. Appl. 2014. Vol. 20, iss. 1. P. 42–65. DOI: https://doi.org/10.1007/s00041-013-9301-6.

8. Khrennikov A. Yu., Shelkovich V. M., Skopina M. p-adic refinable functions and MRA-based wavelets // J. Approx. Theory. 2009. Vol. 161, iss. 1. P. 226–238. DOI: https://doi.org/10.1016/j.jat.2008.08.008.

9. Albeverio S., Evdokimov S., Skopina M. p-Adic Multiresolution Analysis and Wavelet Frames // J. Fourier Anal. Appl. 2010. Vol. 16, iss. 5. P. 693–714. DOI: https://doi.org/10.1007/s00041-009-9118-5.

Полный текст в формате PDF: