Cite this article as:
Klyachin V. A. On the Solvability of the Discrete Analogue of the Minkowski – Alexandrov Problem. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 3, pp. 281-288. DOI: https://doi.org/10.18500/1816-9791-2016-16-3-281-288
On the Solvability of the Discrete Analogue of the Minkowski – Alexandrov Problem
The article deals with the multidimensional discrete analogue of the Minkowski problem in the production of A. D. Aleksandrov on the existence of a convex polyhedron with given curvatures at the vertices. We find the conditions for the solvability of this problem in a general setting, when the curvature measure at the polyhedron vertices is defined by an arbitrary continuous function defined on a field F : S n−1 → (0, +∞). The basis for solving the problem is the solvability of the problem whether each triangulation of a finite set of points P ⊂ S n−1 of the unit sphere corresponds a convex polyhedron whose faces normal belong to the set P.
1. Pogorelov A. V. Mnogomernaia problema Minkovskogo [Multidimensional Minkowsky problem]. Moscow, Nauka, 1971, 95 p. (in Russian).
2. Iorgens K. Uber die Losungen der Differentialgleichung nt − s 2 = 1. Math. Ann., 1954, vol. 127, pp. 130–134.
3. Calabi E. Improper affine hypersheres of convex type and a generalizations of theorem by K. Iorgens. ¨ Michigan Math. J., 1958, vol. 5, iss. 2, pp. 105–126. DOI: https://doi.org/10.1307/mmj/1028998055.
4. Aleksandrov A. D. Dirichlet problem for equation Det||zij || = ϕ(z1, ..., zn, z, x1, ..., xn). I. Vestnik LGU, Ser. Mathematics, mechanics and astronomy, 1958, no. 1, iss. 1, pp. 5–24 (in Russian).
5. Bodrenko A. I. The solution of the Minkowski problem for open surfaces in Riemannian space. Arxiv.org, 2007, arXiv:0708.3929.
6. Aleksandrov A. D. Vypuklye mnogogranniki [Convex polyhedra]. Moscow ; Leningrad, GITTL, 1950, 429 p. (in Russian).
7. Zil’berberg A. A. On existence of closed convex polyhedra with prescrobed curvature of vertexes. Uspehi Mat. Nauk, 1962, vol. 17, no. 4(106), pp. 119–126 (in Russian).