Cite this article as:

Tananko I. E., Fokina N. P. Analysis of closed unreliable queueing networks with batch movements of customers . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 111-117. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-111-117


Language: 
Russian
Heading: 

Analysis of closed unreliable queueing networks with batch movements of customers

Abstract: 

 Closed unreliable queueing network with batch movements is considered. The main result of the paper is the steady state distribution for given type queueing networks. 

References

1. Morrison J. A. Two discrete-time queues in tandem.

IEEE Trans. Commun., 1979, vol. 27, no. 3, pp. 563–573.

2. Boxma O., Kelly F., Konheim A. The product form for

sojourn time distributions in cyclic exponential queues. J.

of ACM., 1984, vol. 31, pp. 128–133.

3. Neely M. J. Exact queueing analysis of discrete time

tandems with arbitrary arrival processes. IEEE Proc. of

the Intern. Conf. of Commun., Paris, 20-24 June 2004,

pp. 1–5.

4. Pestien V., Ramakrishnan S. Monotonicity and

asymptotic queue-length distribution in discrete-time

networks. Queueing Systems., 2002, vol. 40, pp. 313–

331.

5. Henderson W., Taylor P. G. Product form in networks

of queues with batch arrivals and batch services.

Queueing Systems., 1990, vol. 6, pp. 71–88.

6. Henderson W., Taylor P. G. Some new results on

queueing networks with batch movement. J. Appl. Prob.,

1991, vol. 28, pp. 409–421.

7. Henderson W., Pearce C. E. M., Taylor P. G.,

van Djik N. M. Closed queueing networks with batch

services. Queueing Systems, 1990, vol. 6, pp. 59–70.

8. Henderson W., Northcote B. S., Taylor P. G. Triggered

batch movement in queueing networks. Queueing

Systems, 1995, vol. 21, pp. 125–141.

9. Woodward M. E. Towards the accurate modelling of

high-speed communication networks with product-form

discrete-time networks of queues. Computer Communi-

cations, 1998, vol. 21, pp. 1530–1543.

10. Mitrophanov Yu. I., Rogachko E. S., Stankevich E. P.

Analysis of heterogeneous queueing networks with batch

movements of customers. Izv. Sarat. Univ. (N. S.), Ser.

Math. Mech. Inform., 2011, vol. 11, iss. 3, pt. 1, pp. 41–46

(in Russian).

11. Bakeva V., Kolev N. Minimization of the blocking

time of the unreliable Geo/Gd/1 queueing system. Math.

Commun., 1999, vol. 4, pp. 1–10.

12. Liu Z., Gao S. Reliability indices of a Geo/G/1/1

Erlang loss system with active breakdowns under

Bernoulli schedule. Int. J. of Manag. Sci. and Eng.

Manag., 2010, vol. 5(6), pp. 433–438.

13. Malchin C., Daduna H. Discrete time queueing

networks with product form steady state. Availability and

performance analysis in an integrated model. Queueing

Systems, 2010, vol. 65, no. 4, pp. 385–421.

14. Vinod B., Altiok T. Approximating unreliable queueing

networks under the assumption of exponentiality. J.

Opl. Res. Soc., 1986, vol. 37, no. 3, pp. 309–316.

15. Mitrophanov Yu. I., Rogachko E. S., Stankevich E. P.

A method for analysis of queueing networks with batch

movements of customers. Comp. Nauki i Inf. Tech. :

Mater. Mejdun. Nauch. Conf. Saratov, 2009, pp. 142–145

(in Russian).

16. Boucherie R. J., van Dijk N. M. Product forms

for queueing networks with state-dependent multiple job

transitions. Adv. Appl. Probab., 1991, vol. 23, no. 1,

pp. 152–187.

Short text (in English): 
Full text: