The article investigates the three-element Carleman boundary value problem in the class of analytic functions, continuous extension to the contour in the Holder sense, when this problem can not be reduced to a two-element boundary value problems . The unit circle is considered as the contour .To be specific, we study a case of inverse shift. In this case, the solution of the problem is reduced to solving a system of two integral equations of Fredholm second kind; thus significantly used the theory of F. D. Gakhov about Riemann boundary value problem for analytic functions.