Cite this article as:

Alimov A. R. Mazur Spaces and 4.3-intersection Property of (BM)-spaces. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 2, pp. 133-137. DOI: https://doi.org/10.18500/1816-9791-2016-16-2-133-137


Language: 
Russian
Heading: 
UDC: 
517.982.252+517.982.256

Mazur Spaces and 4.3-intersection Property of (BM)-spaces

Abstract: 

The paper puts forward some combinatorial and geometric properties of finite-dimensional (BM)-spaces. A remarkable property of such spaces is that in these spaces one succeeds in giving an answer to some long-standing problems of geometric approximation theory, and in particular, to the question on the existence of continuous ε-selections on suns (Kolmogorov sets) for all ε > 0. A finite-dimensional polyhedral (BM)-space is shown to be a Mazur space, satisfies the 4.3-intersection property, and its unit ball is proved to be a generating set (in the sense of Polovinkin, Balashov, and Ivanov).

References

1. Brown A. L. Suns in normed linear spaces which are finite-dimensional // Math. Ann. 1987. Vol. 279. P. 87–101. DOI: https://doi.org/10.1007/BF01456192.

2. Alimov A. R., Tsar’kov I. G. Connectedness and other geometric properties of suns and Chebyshev sets. Fund. prikl. matem., 2014, vol. 19, no. 4, pp. 21–91 (in Russian). 

3. Brown A. L. Suns in polyhedral spaces // Seminar of Math. Analysis. Proceedings / eds. D. G. Aґ lvarez, G. Lopez Acedo, R. V. Caro; Univ. Malaga and Seville (Spain), Sept. 2002 – Febr. 2003. Sevilla : Universidad de Sevilla, 2003. P. 139–146.

4. Bednov B. B., Borodin P. A. Banach spaces that realize minimal fillings. Sb. Math., 2014, vol. 205, no. 4, pp. 3–20. DOI: https://doi.org/10.1070/SM2014v205n04ABEH004383

5. Hansen A. B., Lima A. The structure of finite dimensional Banach spaces with the 3.2. intersection property // Acta Math. 1981. Vol. 146. P. 1–23. DOI: https://doi.org/10.1007/BF02392457.

6. Boltyanskii V. G., Soltan P. S. Combinatorial geometry and convexity classes. Russian Math. Surveys, 1978, vol. 33, no. 1 (199), pp. 1–45. DOI: https://doi.org/10.1070/RM1978v033n01ABEH003730.

7. Boltyanski V., Martini H., Soltan P. S. Excursions into combinatorial geometry. Berlin : Springer, 1997. 422 p. DOI: https://doi.org/10.1007/978-3-642-59237-9.

8. Granero A. S., Moreno J. P., Phelps R. R. Mazur sets in normed spaces // Discrete Comput Geom. 2004. Vol. 31. P. 411–420. DOI: https://doi.org/10.1007/s00454-003-0808-5.

9. Moreno J. P., Schneider R. Intersection properties of polyhedral norms // Adv. Geom. 2007. Vol. 7, № 3. P. 391–402. DOI: https://doi.org/10.1515/ADVGEOM.2007.025.

10. Balashov M. V., Polovinkin E. S. M-strongly convex subsets and their generating sets. Sb. Math., 2000, vol. 191, no. 1, pp. 26–64. DOI: https://doi.org/10.1070/SM2000v191n01ABEH000447.

11. Ivanov G. E. A criterion of smooth generating sets. Sb. Math., 2007, vol. 198, no. 3, pp. 343–368. DOI: https://doi.org/10.1070/SM2007v198n03ABEH003839.

12. Balashov M. V., Ivanov G. E. Weakly convex and proximally smooth sets in Banach spaces. Izv. Math., 2009, vol. 73, no. 3, pp. 455–499. DOI: https://doi.org/10.1070/IM2009v073n03ABEH002454

13. Schneider R. Convex bodies : The Brunn– Minkowski theory. Cambridge : Cambridge Univ. Press, 1993. DOI: https://doi.org/10.1017/CBO9780511526282.

Full text:
117