Multilinear polynomials H +(¯x, ¯y| ¯ w), H −(¯x, ¯y| ¯ w) ∈ F{X ∪ Y }, the sum of which is a polynomial H (¯x, ¯y| ¯ w) Chang (where F{X∪Y } is a free associative algebra over an arbitrary field F of characteristic not equal two, generated by a countable set X ∪ Y ) have been introduced in this paper. It has been proved that each of them is a consequence of the standard polynomial S−(¯x). In particular it has been shown that the Capelli quasi-polynomials b2m−1(¯xm, ¯y) and h2m−1(¯xm, ¯y) are also consequences of the polynomial S−m (¯x).