Образец для цитирования:
Юрко В. А. ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ НА ПРОИЗВОЛЬНЫХ КОМПАКТНЫХ ГРАФАХ // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2010. Т. 10, вып. 3. С. 33-38. DOI: https://doi.org/10.18500/1816-9791-2010-10-3-33-38
ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ НА ПРОИЗВОЛЬНЫХ КОМПАКТНЫХ ГРАФАХ
Исследуется обратная спектральная задача для операторов Штурма – Лиувилля на произвольных компактных графах со стандартными условиями склейки во внутренних вершинах. Доказана теорема единственности восстановления потенциалов по спектрам.
1. Belishev, M.I. Boundary spectral inverse problem on a class of graphs (trees) by the BC method / M.I. Belishev // Inverse Problems. – 2004. – V. 20. – P. 647–672.
2. Yurko, V.A. Inverse spectral problems for Sturm – Liouville operators on graphs / V.A. Yurko // Inverse Problems. – 2005. – V. 21. – P. 1075–1086.
3. Brown, B.M. A Borg – Levinson theorem for trees / B.M. Brown, R. Weikard // Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – 2005. V. 461, № 2062. – P. 3231–3243.
4. Freiling, G. Inverse spectral problems for Sturm – Liouville operators on noncompact trees / G. Freiling, V.A. Yurko // Results in Mathematics. – 2007. – V. 50. – P. 195–212.
5. Yurko, V.A. Recovering differential pencils on compact graphs / V.A. Yurko // J. Diff. Equations. – 2008. – V. 244. – P. 431–443.
6. Юрко, В.А. Обратные задачи для дифференциальных операторов произвольных порядков на деревьях / В.А. Юрко // Мат. заметки. – 2008. – Т. 83, вып. 1. – С. 139–152.
7. Юрко, В.А. Обратная спектральная задача для пучков дифференциальных операторов на некомпактных пространственных сетях / В.А. Юрко // Дифференциальные уравнения. – 2008. – Т. 44, № 12. – С. 1658– 1666.
8. Yurko, V.A. Inverse problems for Sturm – Liouville operators on bush-type graphs / V.A. Yurko // Inverse Problems. – 2009. – V. 25, № 10, 105008. – 14 p.
9. Юрко, В.А. Об обратной спектральной задаче для дифференциальных операторов на графе-еже / В.А. Юрко // Докл. АН. – 2009. – Т. 425, № 4. – С. 466–470.
10. Марченко, В.А. Операторы Штурма – Лиувилля и их приложения / В.А. Марченко. – Киев: Наук. думка, 1977. – 331 с.
11. Левитан, Б.М. Обратные задачи Штурма – Лиувилля / Б.М. Левитан. – М.: Наука, 1984. – 240 с.
12. Freiling, G. Inverse Sturm – Liouville Problems and their Applications / G. Freiling, V.A. Yurko. – N.Y.: NOVA Science Publishers, 2001. – 305 p.
13. Yurko, V.A. Method of Spectral Mappings in the Inverse Problem Theory / V.A. Yurko. Inverse and Ill-posed Problems Series. – Utrecht: VSP, 2002. – 303 p.
14. Beals, R. Direct and Inverse Scattering on the Line / R. Beals, P. Deift, C. Tomei. – Math. Surveys and Monographs. – V. 28. – Providence, R.I.: Amer. Math. Soc., 1988. – 275 p.
15. Yurko, V.A. Inverse Spectral Problems for Differential Operators and their Applications / V.A. Yurko. – Amsterdam: Gordon and Breach, 2000. – 253 p.
16. Юрко, В.А. Введение в теорию обратных спектральных задач / В.А. Юрко. – М.: Физматлит, 2007. – 384 с.
17. Наймарк, М.А. Линейные дифференциальные операторы / М.А. Наймарк. – М.: Наука, 1969. – 526 с.
18. Bellmann, R. Differential-difference Equations / R. Bellmann, K. Cooke. – N.Y.: Academic Press, 1963. – 548 p.
19. Conway, J.B. Functions of One Complex Variable. 2nd ed., V. I / J.B. Conway. – N.Y.: Springer-Verlag, 1995. – 445 p.