Cite this article as:
Yurko V. A. Uniqueness of the Solution of the Inverse Problem for Differential Operators on Arbitrary Compact Graphs. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2010, vol. 10, iss. 3, pp. 33-38. DOI: https://doi.org/10.18500/1816-9791-2010-10-3-33-38
Uniqueness of the Solution of the Inverse Problem for Differential Operators on Arbitrary Compact Graphs
An inverse spectral problem is studied for Sturm – Liouville operators on arbitrary compact graphs with standard matching conditions in internal vertices. A uniqueness theorem of recovering operator’s coefficients from spectra is proved.
1. Belishev, M.I. Boundary spectral inverse problem on a class of graphs (trees) by the BC method / M.I. Belishev // Inverse Problems. – 2004. – V. 20. – P. 647–672.
2. Yurko, V.A. Inverse spectral problems for Sturm – Liouville operators on graphs / V.A. Yurko // Inverse Problems. – 2005. – V. 21. – P. 1075–1086.
3. Brown, B.M. A Borg – Levinson theorem for trees / B.M. Brown, R. Weikard // Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – 2005. V. 461, № 2062. – P. 3231–3243.
4. Freiling, G. Inverse spectral problems for Sturm – Liouville operators on noncompact trees / G. Freiling, V.A. Yurko // Results in Mathematics. – 2007. – V. 50. – P. 195–212.
5. Yurko, V.A. Recovering differential pencils on compact graphs / V.A. Yurko // J. Diff. Equations. – 2008. – V. 244. – P. 431–443.
6. Юрко, В.А. Обратные задачи для дифференциальных операторов произвольных порядков на деревьях / В.А. Юрко // Мат. заметки. – 2008. – Т. 83, вып. 1. – С. 139–152.
7. Юрко, В.А. Обратная спектральная задача для пучков дифференциальных операторов на некомпактных пространственных сетях / В.А. Юрко // Дифференциальные уравнения. – 2008. – Т. 44, № 12. – С. 1658– 1666.
8. Yurko, V.A. Inverse problems for Sturm – Liouville operators on bush-type graphs / V.A. Yurko // Inverse Problems. – 2009. – V. 25, № 10, 105008. – 14 p.
9. Юрко, В.А. Об обратной спектральной задаче для дифференциальных операторов на графе-еже / В.А. Юрко // Докл. АН. – 2009. – Т. 425, № 4. – С. 466–470.
10. Марченко, В.А. Операторы Штурма – Лиувилля и их приложения / В.А. Марченко. – Киев: Наук. думка, 1977. – 331 с.
11. Левитан, Б.М. Обратные задачи Штурма – Лиувилля / Б.М. Левитан. – М.: Наука, 1984. – 240 с.
12. Freiling, G. Inverse Sturm – Liouville Problems and their Applications / G. Freiling, V.A. Yurko. – N.Y.: NOVA Science Publishers, 2001. – 305 p.
13. Yurko, V.A. Method of Spectral Mappings in the Inverse Problem Theory / V.A. Yurko. Inverse and Ill-posed Problems Series. – Utrecht: VSP, 2002. – 303 p.
14. Beals, R. Direct and Inverse Scattering on the Line / R. Beals, P. Deift, C. Tomei. – Math. Surveys and Monographs. – V. 28. – Providence, R.I.: Amer. Math. Soc., 1988. – 275 p.
15. Yurko, V.A. Inverse Spectral Problems for Differential Operators and their Applications / V.A. Yurko. – Amsterdam: Gordon and Breach, 2000. – 253 p.
16. Юрко, В.А. Введение в теорию обратных спектральных задач / В.А. Юрко. – М.: Физматлит, 2007. – 384 с.
17. Наймарк, М.А. Линейные дифференциальные операторы / М.А. Наймарк. – М.: Наука, 1969. – 526 с.
18. Bellmann, R. Differential-difference Equations / R. Bellmann, K. Cooke. – N.Y.: Academic Press, 1963. – 548 p.
19. Conway, J.B. Functions of One Complex Variable. 2nd ed., V. I / J.B. Conway. – N.Y.: Springer-Verlag, 1995. – 445 p.