Образец для цитирования:

Выгодчикова И. Ю. О единственности решения задачи наилучшего приближения многозначного отображения алгебраическим полиномом // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2006. Т. 6, вып. 1. С. 11-19. DOI: https://doi.org/10.18500/1816-9791-2006-6-1-2-11-19


Язык публикации: 
русский
Рубрика: 
УДК: 
517.518.82

О единственности решения задачи наилучшего приближения многозначного отображения алгебраическим полиномом

Аннотация: 

В настоящей статье рассмотрена задача о наилучшем приближении дискретного многозначного отображения, образами которого в узлах дискретной сетки являются фиксированные отрезки, алгебраическим полиномом заданной степени. Получены необходимые и достаточные условия единственности решения этой задачи. Доказательство основано на опубликованных ранее статьях о свойствах решения рассматриваемой задачи, а также на двух вспомогательных леммах. Используется теория минимаксных задач, теория приближений П.Л. Чебышева дискретных функций алгебраическими полиномами и многозначный анализ.

Ключевые слова: 
Библиографический список

1. Выгодчикова И.Ю. О наилучшем приближении диск- ретного мультиотображения алгебраическим полиномом // Математика. Механика: Сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2001. Вып. 3.С. 25–27.

2. Выгодчикова И.Ю. Об алгоритме решения задачи о наилучшем приближении дискретного многозначного отображения алгебраическим полиномом // Математика. Механика: Сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2002. Вып. 4. С. 27–31.

3. Демьянов В.Ф., Малоземов В.Н. Введение в минимакс. М.: Наука, 1972.

4. Выгодчикова И.Ю. О крайних точках множества решений задачи о наилучшем приближении многозначного отображения алгебраическим полиномом // Математика. Механика: Сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2003. Вып. 5. С. 15–18.

Полный текст в формате PDF: