Образец для цитирования:

Салимов Р. Б. О новом подходе к решению краевой задачи Римана с условием на луче в случае бесконечного индекса // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2016. Т. 16, вып. 1. С. 29-33. DOI: https://doi.org/10.18500/1816-9791-2016-16-1-29-33


Язык публикации: 
русский
Рубрика: 
УДК: 
517.54

О новом подходе к решению краевой задачи Римана с условием на луче в случае бесконечного индекса

Аннотация: 

Для решения однородной краевой задачи Римана с бесконечным индексом и условием на луче предлагается новый подход, основанный на приведении рассматриваемой задачи к соответствующей задаче с условием на действительной оси и конечным индексом. Требуется определить функцию Φ(z), аналитическую и ограниченную в комплексной плоскости z, разрезанной по положительной действительной полуоси L+ , если выполняется краевое условие Φ+ (t) = G(t)Φ (t),t ∈ L + , где Φ+(t), Φ(t) – предельные значения функции Φ(z), при z → t соответственно слева и справа, коэффициент G(t) – заданная функция, для аргумента которой справедливо представление argG(t) = ν tρ + ν(t), t ∈ L+ , здесь ν , ρ — заданные числа, ν > 0, 1/2 < ρ < 1, причём ln|G(t)|, ν(t) — функции, удовлетворяющие условию Гёльдера. Принимается, что G(t) = 1 при t ∈ (−∞,0). Для устранения бесконечного разрыва argG(t) используются функции E+(z) = e(α+iβ)zρ , 0 6 argz 6 π, E(z) = e(α−iβ)z ρ , −π ≤ argz ≤ 0, путём соответствующего подбора действительных чисел α, β.

Библиографический список
  1. Салимов Р. Б., Карабашева Э. Н. Новый подход к решению краевой задачи Римана с бесконечным индексом // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2014. Т. 14, вып. 2. С. 155–164.
  2. Гахов Ф. Д. Краевые задачи. М. : Наука, 1977. 640 с.
  3. Маркушевич А. И. Теория аналитических функций : в 2 т. Т. 2 М. : Наука, 1968. 624 с.
  4. Говоров Н. В. Краевая задача Римана с бесконечным индексом. М. : Наука, 1986. 239 с.
Полный текст в формате PDF: