Изучены вопросы существования и единственности классического решения одномерной смешанной задачи с однородными граничными условиями типа Рикье для одного класса полулинейных бипараболических уравнений четвёртого порядка. Методом априорных оценок доказана теорема существования в целом классического решения изучаемой смешанной задачи.
Рассматриваются краевые задачи в полупространстве для одного класса псевдодифференциальных уравнений. Установлены коэрцитивные априорные оценки и теоремы о существовании решений таких краевых задач.
Доказана теорема о существовании и единственности решения краевой задачи в полосе для одного вырождающегося эллиптического уравнения высокого порядка, вырождающегося на одной из границ полосы в уравнение третьего порядка по одной из переменных.