Изучено движение твёрдого тела с малым смещением центра масс с оси динамической симметрии. Получены аналитические условия для существования гиперболической особой точки на фазовом портрете системы и аналитическое решение для сепаратрис. Под действием малого возмущения, вызванного асимметрией, тело совершает хаотическое движение вблизи сепаратрис. С помощью численного моделирования, основанного на методе Мельникова в интерпретации Холмса–Масдена, получено условие существования хаотического движения, которое проиллюстрировано серией сечений Пуанкаре.