корневые функции

О кратной полноте корневых функций пучков дифференциальных операторов с постоянными коэффициентами и распадающимися краевыми условиями

В пространстве суммируемых с квадратом функций на отрезке [0,1] рассматривается класс полиномиальных пучков обыкновенных дифференциальных операторов n-го порядка. Коэффициенты дифференциального выражения предполагаются постоянными. Краевые условия являются распадающимися и двухточечными в концах 0 и 1 (l краевых условий берутся только в точке 0, а остальные n − l — в точке 1). Дифференциальное выражение и краевые формы предполагаются однородными, т.е. содержат только главные части.

О КРАТНОЙ ПОЛНОТЕ КОРНЕВЫХ ФУНКЦИЙ ПУЧКОВ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

Рассматривается класс пучков обыкновенных дифференциальных операторов n-го порядка с постоянными коэффициентами. Предполагается, что корни характеристического уравнения пучков этого класса лежат на одной прямой, проходящей через начало координат, таким образом, что один корень лежит по одну сторону от начала координат, а остальные по другую сторону. Описываются случаи, когда система корневых функций m-кратно (3 ≤ m ≤ n − 1) полна в пространстве суммируемых с квадратом функций на основном отрезке.

О кратной полноте корневых функций одного класса пучков дифференциальных операторов с постоянными коэффициентами

Рассматривается класс пучков обыкновенных дифференциальных операторов n-го порядка с постоянными коэффициентами. Предполагается, что корни характеристического уравнения пучков этого класса простые, отличные от нуля, и лежат на одной прямой, проходящей через начало координат. Формулируются достаточные условия n-кратной полноты системы корневых функций пучков этого класса в пространстве суммируемых с квадратом функций на основном отрезке.