Пусть N > 2 — некоторое натуральное число. Выберем на вещественной оси N равномерно расположенных точек tk = 2πk/N + u (0 6 k 6 N − 1). Обозначим через Ln,N(f) = Ln,N(f,x) (1 6 n 6 N/2) тригонометрический полином порядка n, обладающий наименьшим квадратичным отклонением от f относительно системы{tk}N−1 k=0 . Выберем m+1 точку −π = a0 < a1 < ... < am−1 < am = π, где m > 2, и обозначим Ω = {ai}m i=0.