stability

Устойчивость периодических бильярдных траекторий в треугольнике

Рассматривается проблема устойчивости периодических бильярдных траекторий в треугольниках. Под устойчивостью понимается сохранение периода и качественной структуры траектории (её комбинаторного типа) при достаточно малых изменениях треугольника. Для описания устойчивых траекторий вводятся различные виды развёрток: геометрические, алгебраические, веерные. На основе введённых развёрток предложен новый метод веерного кодирования, упрощающий исследование устойчивости периодических траекторий.

ХАРАКТЕРИЗАЦИЯ УСТОЙЧИВОСТИ РЕШЕНИЯ ЗАДАЧИ ОБ АСФЕРИЧНОСТИ ВЫПУКЛОГО КОМПАКТА

Рассматривается вопрос об устойчивости решения задачи об асферичности выпуклого компакта к погрешности задания этого компакта. Показано, что задача обладает устойчивостью оптимального значения целевой функции (показателя асферичности). Исследуются также свойства многозначного отображения, сопоставляющего выпуклому компакту множество центров его асферичности. Доказано, что это многозначное отображение полунепрерывного сверху всюду на пространстве выпуклых компактов. Приводится пример, показывающий, что полунепрерывности снизу может не быть.

словия аналитичности характеристического и возмущающих квазимногочленов комбинированных динамических систем

Комбинированные динамические системы (КДС) представляют собой связанные посредством граничных условий и условий связи системы обыкновенных дифференциальных уравнений и уравнений в частных производных при соответствующих начальных условиях. Проверка устойчивости КДС может быть выполнена на основе быстрого алгоритма, для применения которого необходима аналитичность характеристического и возмущающих квазимногочленов КДС в правой комплексной полуплоскости и вблизи мнимой оси.

Об устойчивости по функционалу решения задачи о наилучшем приближении выпуклого тела шаром фиксированного радиуса

Рассматривается конечномерная задача о равномерной оценке (наилучшем приближении) в метрике Хаусдорфа выпуклого тела шаром произвольной нормы с фиксированным радиусом. Известно, что в случае, когда оцениваемое тело и шар используемой нормы являются многогранниками, данная задача может быть сведена к задаче линейного программирования. Это позволяет предложить метод получения приближенного решения задачи на основе предварительной аппроксимации тела и единичного шара нормы многогранниками.

Математическое моделирование потери устойчивости ступенчатого физически однородного стержня при ударе о жесткую преграду методом Тимошенко

Осуществляется математическое моделирование продольного упругого центрального удара системы ступенчатого и однородного стержней о жесткую преграду при неудерживающих связях путем решения волнового уравнения методом Даламбера. На основе закона сохранения энергии методом Тимошенко рассчитывается величина критической сжимающей нагрузки, в соответствии с которой, далее рассчитывается величина критической предударной скорости, приводящая к потере устойчивости рассматриваемой стержневой системы. 

Математическое моделирование критической скорости многоступенчатого стержня при продольном ударе

 Осуществляется математическое моделирование продольного упругого центрального удара многоступенчатого стержня о жесткую преграду при неудерживающих связях. Математическое моделирование проводится путем точного аналитического решения волнового дифференциального уравнения методом Даламбера с заданием необходимых начальных и граничных условий. С применением формулы Эйлера получено аналитическое выражение для расчета критической предударной скорости, при которой наступает потеря устойчивости ступенчатого стержня.