Cite this article as:

Tyuleneva A. A. Approximation of Bounded p-variation Periodic Functions by Generalized Abel–Poisson and Logarithmic Means. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 4, pp. 27-35. DOI: https://doi.org/10.18500/1816-9791-2013-13-4-27-35


Language: 
Russian
Heading: 
UDC: 
517.518

Approximation of Bounded p-variation Periodic Functions by Generalized Abel–Poisson and Logarithmic Means

Abstract: 
An asymptotic estimate of approximation by generalized Abel–Poisson means in p-variation metric on the class of functions with given majorant of p-variational best approximation is proved. Several other quantity results on approximation by these means are
obtained.
References
1. Terekhin A. P. The approximation of functions of bounded p-variation. Izv. vysch. ucheb. zaved. Matematika, 1965, no. 2. p. 171–187. (in Russian).
2. Bari N. K., Stechkin S. B. Best approximations and differential properties two conjugate functions. Trudy Mosk. matem. obch., 1956, vol. 5, pp. 483–522. (in Russian).
3. Zygmund A. Trigonometricheskie riady [Trigonometric series], vol. 1. Moscow, Mir, 1965, 616 p. (in Russian).
4. Khan H. On some aspects of summability. Indian J. Pure Appl. Math., 1975, vol. 6, no. 6, pp. 1468–1472.
5. Khan H. On the degree of approximation. Math.  Chronicle, 1981, vol. 10, no. 1, pp. 63–72.
6. Hardi G. Raskhodiashchiesia riady [Divergent series]. Moscow, Izd-vo inostr. lit., 1951, 504 p. (in Russian).
7. Timan M. F. Best approximation of functions and linear methods of summation of Fourier series. Izvestiya AN SSSR. Ser. matem., 1965, vol. 29, no. 3, pp. 587–604 (in Russian).
8. Borwein D. A logarithmic method of summability. J. London Math. Soc., 1958, vol. 33, no. 2, pp. 212–220.
9. Hsiang F. C. Summability of the Fourier series. Bull. Amer. Math. Soc., 1961, vol. 67, no. 1, pp. 150–153.
10. Chikina T. S. Approximation by Zygmund–Riesz means in the p-variation metrics. Analysis Math., 2013, vol. 39, no. 1, pp. 29–44.
11. Timan A. F. Teoriia priblizheniia funktsii deistvitel’nogo peremennogo [Approximation theory of real variable functions]. Moscow, Fizmatgiz, 1960, 624 p.(in Russian).
12. Golubov B. I. On the best approximation p-absolutely  continnons functions. Several questions of function theory and functional analisis, vol. 4. Tbilisi, Izd-vo Tbil. Univ.,1988, pp. 85–99 (in Russian).
13. Bari N. K. On the best approximations of two conjugate functions by trigonometric polinomials. Izvestiya AN SSSR. Ser. matem., 1955, vol. 19, no. 5, pp. 284–302 (in Russian).
14. Volosivets S. S. Convergence of series of Fourier coefficients of p-absolutely continuous functions. Analysis Math. 2000, vol. 26, no. 1, pp. 63–80.
15. Bari N. K. Trigonometricheskie riady [Trigonometric series]. Moscow, Fizmatgiz, 1961. 936 p. (in Russian).
Short text (in English): 
Full text: