Cite this article as:
Magomed-Kasumov M. G. Approximation of Functions by Fourier–Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 3, pp. 295-304. DOI: https://doi.org/10.18500/1816-9791-2014-14-3-295-304
Language:
Russian
Heading:
UDC:
517.521
Approximation of Functions by Fourier–Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
Abstract:
It is considered weighted variable Lebesgue Lp(x)w and Sobolev Wp(⋅),w spaces with conditions on exponent p(x)≥1 and weight w(x) that provide Haar system to be a basis in Lp(x)w. In such spaces there were obtained estimates of Fourier–Haar sums convergence speed. Estimates are given in terms of modulus of continuity Ω(f,δ)p(⋅),w, based on mean shift (Steklov's function).
Key words:
References
1. Sharapudinov I. I. Topology of the space Lp(t)([0, 1]). Mat. Zametki, 1979, vol. 26, no. 4, pp. 613–632. DOI: 10.1007/BF01159546.
2. Sharapudinov I. I. Some aspects of approximation theory in variable Lebesgue spaces. Vladikavkaz, 2012, 270 p. (in Russian).
3. Diening L., Harjulehto P., Hasto P., Ruzicka M. Lebesgue and Sobolev Spaces with Variable Exponents. Berlin, Heidelberg, Springer-Verlag, 2011, 509 p. DOI : 10.1007/978-3-642-18363-8.
4. Cruz-Uribe D., Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Berlin, Heidelberg, Springer-Verlag, 2013. 312 p. DOI 10.1007/978-3-0348- 0548-3.
5. Sharapudinov I.I. Approximation of function by Fourier— Haar sums in variable exponent Lebesgue and Sobolev spaces by Fourier—Haar sums. Sb. Math., 2014, vol. 205, no. 2, pp. 145–160. DOI: 10.4213/sm8274.
6. Magomed-Kasumov M. G. Basis property of the Haar system in the weighted variable Lebesgue spaces. Poriadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniia: tezisy dokladov mezhdunarodnoi nauchnoi konferentsii (Vladikavkaz, 14—20.07.2013). Vladikavkaz, 2013, pp. 68–69 (in Russian).
7. Magomed-Kasumov M. G. Basis property of the Haar system in the weighted variable Lebesgue spaces. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Mathematical Journal], 2014, vol. 16, iss. 3, pp. 38–46 (in Russian).
8. Kashin B. S., Saakyan A. A. Orthogonal series. Translations of Math. Monographs, vol. 75, Providence, RI, Amer. Math. Soc., 1989.
9. Sharapudinov I.I. On the basis property of the Haar system in the space Lp(t)([0, 1]) and the principle of localization in the mean. Math. of the USSRSbornik, 1987, vol. 58, no. 1, pp. 279—287. DOI: 10.1070/SM1987v058n 01ABEH003104.
10. Guven A., Israfilov D. M. Trigonometric approximation in generalized lebesgue spaces Lp(x). J. Math. Inequal., 2010, vol. 4, no. 2, pp. 285–299.
11. Shakh-Emirov T. N. O ravnomernoi ogranichennosti semeistva operatorov Steklova v vesovykh prostranstvakh Lebega s peremennym pokazatelem [Uniform boundedness of Steklov’s operators families in weighted variable Lebesgue spaces]. Vestnik DNC RAN, 2014, iss. 54, pp. 12–17 (in Russian).
12. Sobol I. M. Mnogomernye kvadratnye formuly i funktsii Khaara [Multidimensional Quadrature Formulas and Haar Functions]. Moscow, Nauka, 1969, 288 p. (in Russian).
Full text:
83