Cite this article as:
Mitrophanov Y. I., Rogachko E. S., Stankevich E. P. Dynamic load allocation in closed queueing networks with batch movements . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2012, vol. 12, iss. 1, pp. 22-28. DOI: https://doi.org/10.18500/1816-9791-2012-12-1-22-28
Dynamic load allocation in closed queueing networks with batch movements
A method of load allocation control in closed queueing networks with batch movements is proposed. When this method is used in queueing networks of considered type, close to given customer allocation among queueing systems is provided. The control is realized by use of different routing matrices during fixed time intervals in process of network operation. Models of evolution and an approximate method of computing a stationary distribution and other stationary characteristics of considered type queueing networks are presented.
1. Bovopoulos A. D., Lazar A. A. Optimal load balancing
for Markovian queueing networks // Proc. 30th Midwest
Symp. Circ. and Syst. Syracuse; N.Y., 1987. P. 1428–1432.
2. Alanyali M., Hajek B. Analysis of simple algorithms
for dynamic load balancing // Math. Oper. Res. 1997.
Vol. 22, № 4. P. 840–871.
3. Bonald T., Jonckheere M., Proutiere A. Insensitive
load balancing // Proc. of ACM Sigmetrics/Performance.
N.Y., 2004. P. 6367–6378.
4. Down D. G., Lewis M. E. Dynamic load balancing in
parallel queueing systems: stability and optimal control //
Eur. J. Oper. Res. 2006. Vol. 168, № 2. P. 509–519.
5. Henderson W., Pearce C. E. M., Taylor P. G.,
Dijk N. M. Closed queueing networks with batch
services // Queueing Systems. 1990. Vol. 6. P. 59–70.
6. Henderson W., Taylor P. G. Product form in networks
of queues with batch arrivals and batch services //
Queueing Systems. 1990. Vol. 6. P. 71–88.
7. Boucherie R. J., Dijk N. M. Product forms for queueing
networks with state-dependent multiple job transitions //
Adv. Appl. Prob. 1991. Vol. 23, № 1. P. 152–187.
8. Serfozo R. F. Queueing networks with dependent nodes
and concurrent movements // Queueing Systems. 1993.
Vol. 13. P. 143–182.
9. Miyazawa M. Structure-reversibility and departure
functions of queueing networks with batch movements
and state dependent routing // Queueing Systems. 1997.
Vol. 25. P. 45–75.
10. Coyle A. J., Henderson W., Pearce C. E. M.,
Taylor P. G. A general formulation for mean-value
analysis in product-form batch-movement queueing
networks // Queueing Systems. 1994. Vol. 16. P. 363–
372.
11. Bause F., Boucherie R. J., Buchholz P. Norton’s
theorem for batch routing queueing networks //
Stochastic Models. 2001. Vol. 17. P. 39–60.
12. Митрофанов Ю. И., Рогачко Е. С. Модели и анализ
сетей массового обслуживания с динамическим управ-
лением распределением нагрузки // Автоматика и вы-
числительная техника. 2006. № 5. С. 69–77.
13. Митрофанов Ю. И., Фокина Н. П. Анализ сетей
массового обслуживания с динамическим управлени-
ем маршрутизацией // Изв. Сарат. ун-та. Нов. сер.
2007. Т. 7. Сер. Математика. Механика. Информати-
ка, вып. 1. С. 27–33.
14. Митрофанов Ю. И., Рогачко Е. С. Управление рас-
пределением нагрузки в сетях массового обслуживания
// Автоматика и телемеханика. 2008. № 9. С. 94–102.