Cite this article as:
Golub A. V., Khromov A. P. Equiconvergence Theorem for Expansions in Eigenfunctions of Integral Operators with Discontinuous Involution. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2007, vol. 7, iss. 2, pp. 5-10. DOI: https://doi.org/10.18500/1816-9791-2007-7-2-5-10
Equiconvergence Theorem for Expansions in Eigenfunctions of Integral Operators with Discontinuous Involution
In the paper we consider the equiconvergence of expansions in trigonometric Fourier series and in eigen- and associated functions of integral operators with involution having discontinuities of the first type.
1. Хромов А.П. Интегральные операторы с ядрами, раз- рывными на ломаных линиях // Мат. сб. 2006. Т. 197, вып. 11. С. 115–142.
2. Корнев В.В., Хромов А.П. О равносходимости разложений по собственным функциям интегральных операторов с ядрами, допускающими разрывы производных на диагоналях // Мат. сб. 2001. Т. 192, № 10. С. 33–50.