Cite this article as:
Bosiakov S. M. Finite Element Analysis of the Influence of the Orthodontic Appliance Design on the Maxillary Expansion. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 4, pp. 42-51. DOI: https://doi.org/10.18500/1816-9791-2013-13-4-42-52
Finite Element Analysis of the Influence of the Orthodontic Appliance Design on the Maxillary Expansion
In present paper the results of the stress-strain state finite element analysis of the humanmaxillary complex after activating orthodontic
appliance are performed. Skull and abutment teeth models are obtained on the basis of the tomographic data of the dry intact adult
skull. Orthodontic appliance designs are differ in the arrangement of rods and screws relative to the sky. The equivalent stresses and
displacements of the maxillary bones and supporting the teeth are evaluated. It is shown that the horizontal location of orthodontic
appliance screw and rods in the skull bones having the highest stresses, but there tipping teeth and upward movement of the maxillary
bones are observed. For orthodontic appliance activating with a screw located near the palate, there are decreased stresses on the
maxillary bone complex, and bones and supporting teeth are moved down. The positions screw orthodontic appliance to translation
the upper jaw bones are assessed.
1. Chaconas S. J., Caputo A. A. Observation of orthopedic force distribution produced by maxillary orthodontic appliances // Am. J. Orthod. 1982. Vol. 82. P. 492–501.
2. Iseri H., Tekkaya A. E., Oztan O., Bilgic S. Biomechanical effects of rapid maxillary expansion on the craniofacial skeleton, studied by the finite element method // Eur. J. Orthod. 1998. Vol. 20. P. 347–356.
3. Provatidis C., Georgiopoulos B., Kotinas A., McDonald J. P. On the FEM modeling of craniofacial changes during rapid maxillary expansion // Med. Eng. Phys. 2007. Vol. 29. P. 566–579.
4. Wang D., Cheng L., Wang C., Qian Y., Pan X. Biomechanical analysis of rapid maxillary expansion in the UCLP patient // Med. Eng. Phys. 2009. Vol. 31. P. 409–417.
5. Ludwig B., Baumgaertel S., Zorkun B., Bonitz L., Glasl B., Wilmes B., Lisson J. Application of a new viscoelastic finite element method model and analysis of miniscrew-supported hybrid hyrax treatment // Am. J. Orthod. Dentofac. Orthop. 2013. Vol. 143. P. 426–435.
6. Chung C. H., Font B. Skeletal and dental changes in the sagittal, vertical, and transverse dimensions after rapid palatal expansion // Am. J. Orthod. Dentofac. Orthop. 2004. Vol. 126. P. 569–575.
7. Cozzani M., Rosa M., Cozzani P., Siciliani G. Deciduous dentitionanchored rapid maxillary expansion in crossbite and non-crossbite mixed dentition patients: reaction of the permanent first molar // Prog. Orthod.
2003. Vol. 4. P. 15–22.
8. Wertz R. A. Skeletal and dental changes accompanying rapid midpalatal suture opening // Am. J. Orthod. 1970. Vol. 58. P. 41–46.
9. Timms D. J. A study of basal movement with rapid maxillary expansion // Am. J. Orthod. 1980. Vol. 77. P. 500–507.
10. Baccetti T., Franchi L., Cameron C. G., McNamara J. A. Jr. Treatment timing for rapid maxillary expansion // Angle Orthod. 2001. Vol. 71. P. 343–350.
11. Shetty V., Caridad J. M., Caputo A. A., Chaconas S. J. Biomechanical rationale for surgicalorthodontic expansion of the adult maxilla // J. Oral Maxillofac. Surg. 1994. Vol. 52. P. 742–749.
12. Pavlin D., Vukicevic D. Mechanical reactions of facial skeleton to maxillary expansion determined by laser holography // Am. J. Orthod. 1984. Vol. 85. P. 498–507.
13. Kragt G., Duterloo H. S., Ten Bosch J. J. The initial reaction of a macerated human skull caused by orthodontic cervical traction determined by laser metrology // Am. J. Orthod. 1982. Vol. 81. P. 49–56.
14. Braun S., Bottrel J. A., Lee K. G., Lunazzi J. J., Legan H. L. The biomechanics of maxillary sutural expansion // Am. J. Orthod. Dentofac. Orthop. 2000.Vol. 118. P. 257–261.
15. Book D., Lavelle C. Changes in craniofacial size and shape with two modes of orthodontic treatment // J. Craniofac. Genet. Dev. Biol. 1988. Vol. 8. P. 207–223.
16. Tanne K., Miyasaka J., Yamagata Y., Sakuda M., Burstone C. J. Biomechanical changes in the craniofacial skeleton by the rapid expansion appliance // J. Osaka Univ. Dental Soc. 1985. Vol. 30. P. 345–356.
17. Nakagawa M., Ichikawa K. Biomechanical effects of maxillary protraction on the craniofacial complex on the strain gauge measurements // J. Japan Orthod. Soc. 1986. Vol. 45. P. 109–118.
18. Boryor A., Geigera M., Hohmann A., Wunderlich A., Sander C., Sander F. M., Sander F. G. Stress distribution and displacement analysis during an intermaxillary disjunction A three-dimensional FEM study of a human skull // J. Biomech. 2008. Vol. 41. P. 376–382.
19. Capelozza Filho L., De Almeida A. M., Ursi W. J. Rapid maxillary expansion in cleft lip and palate patients // J. Clin. Orthod. 1994. Vol. 28. P. 34–39.
20. Cattaneo P., Dalstra M., Melsen B. The transfer of occlusal forces through the maxillary molars: a finite element study // Am. J. Orthod. Dentofac. Orthop. 2003. Vol. 123. P. 367–373.
21. Gautam P., Valiathan A., Adhikari R. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study // Am. J. Orthod. Dentofac. Orthop. 2007. Vol. 132. P. 5.e1–5.e11.
22. Holberg C., Holberg N., Schwenzer K., Wichelhaus A., Rudzki-Janson I. Biomechanical analysis of maxillary expansion in CLP patients // Angle Orthod. 2007. Vol. 77. P. 280–287.
23. Jafari A., Shetty K. S., Kumar M. Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forces-a three dimensional FEM study // Angle Orthod. 2003. Vol. 73. P. 12–20.
24. Lee H., Ting K., Nelson M., Sun N., Sung S. J. Maxillary expansion in customized finite element method models // Am. J. Orthod. Dentofac. Orthop. 2009.
Vol. 136. P. 367–374.
25. Miyasaka-Hiraga J., Tanne K., Nakamura S. Finite element analysis for stresses in the craniofacial sutures produced by maxillary protraction forces applied at the upper canines // Br. J. Orthod. 1994. Vol. 21. P. 343–
348.
26. Nicholson P. T., Plint D. A. A long-term study of rapid maxillary expansion and bone grafting in cleft lip and palate patients // Eur. J. Orthod. 1989. Vol. 11. P. 186–192.
27. Pan X., Qian Y., Yu J., Wang D., Tang Y., Shen G. Biomechanical effects of rapid palatal expansion on the craniofacial skeleton with cleft palate: a three-dimensional finite element analysis // Cleft Palate Craniofac J. 2007.
Vol. 44. P. 149–154.
28. Tanne K., Hiraga J., Kakiuchi K., Yamagata Y., Sakuda M. Biomechanical effect of anteriorly directed extraoral forces on the craniofacial complex: a study using the finite element method // Am. J. Orthod. Dentofac.
Orthop. 1989. Vol. 95. P. 200–207.
29. Tindlund R. S., Rygh P., Boe O. E. Intercanine widening and sagittal effect of maxillary transverse expansion in patients with cleft lip and palate during the deciduous and mixed dentitions // Cleft Palate Craniofac.
J. 1993. Vol. 30. P. 195–207.
30. Yu H. S., Baik H. S., Sung S. J., Kim K. D., Cho Y. S. Three-dimensional finite-element analysis of maxillary protraction with and without rapid palatal expansion // Eur. J. Orthod. 2007. Vol. 29. P. 118–125.
31. Landes C. A., Laudermann K., Petruchin O., Mack M. G., Kopp S., Ludwig B., Sader R. A., Seitz O. Comparison of bipartite versus tripartite osteotomy for maxillary transversal expansion using 3-dimensional preoperative and postexpansion computed tomography data // J. Oral. Maxillofac. Surg. 2009. Vol. 67. P. 2287–2301.
32. Zimring J. F., Isaacson R. J. Forces produced by rapid maxillary expansion III. Forces present during retention // Angle Orthod. 1965. Vol. 35. P. 178–186.
33. Wood S. A., Strait D. S., Dumont E. R., Ross C. F., Grosse I. R. The effects of modeling simplifications on craniofacial finite element models: The alveoli (tooth sockets) and periodontal ligaments // J. Biomech. 2011. Vol. 44. P. 1831–1838.