напряженно-деформированное состояние

Stability of Vertical Mountain Developments in Elastic Viscous-Plastic Files with Porous Structure

The mathematical model of the basic intense-deformed condition of the vertical mountain development, considering elastic-viscousplastic properties of a file, and also porous structure of a material is constructed. Within the limits of the exact three-dimensional stability equations stability of the basic condition of vertical development in files of rocks with the compressed time is investigated. The estimation of influence on size of critical pressure of parametres of hills is given.

 

Numerical Study of Stress-Strain State of a Thin Anisotropic Rectangular Plate

Static bending of a thin rectangular anisotropic plate is considered in the framework of Kirchhoff hypotheses. At each point of the plate there is one plane of elastic symmetry parallel to the middle plane of the plate. It is assumed that the type of boundary conditions does not change along each of the straight sides. By applying of a modified method of spline collocation the twodimensional boundary value problem for the determination of deflection is reduced to a boundary value problem for the system of ordinary differential equations, which is solved numerically.

Investigation of Harmonic Waves in the Viscoelastic Layer

The paper deals with the study of harmonic waves in the viscoelastic layer. The properties of the material are described by the constitutive equations in the integral form. The fractional exponential function of Rabotnov is chosen as a kernel of integral operator. Two cases are considered: symmetric stress-strain state (SSS) and asymmetric SSS. The properties of modes which change in time harmonically are investigated for the purpose of studying of the free vibrations. Dispersion equations for both cases are derived. The numerical solutions of dispersion equations are obtained.

Numerical analysis of renal artery pathologies

 Mathematical modeling based on experimental data (ultrasonic imaging, angiography, 3D reconstruction via spiral computed tomography) was performed. Anatomically precise model of renal artery was created. Basic principles of blood flow dynamics with stressstrain state of artery walls were studied for normal, pathologic renal arteries and arteries with hemostasis of intraorganic branches. 

Biomechanical Assessment of the Bone Ingrowth Effect During Cementless Endoprosthesis Osteointegration

Finite elementmodel of porous titaniuminserts for cementless endoprosthesis was reconstructed usingX-ray tomography. The stress distribution is calculated for a model with open-cell foam and composite bone / titanium. The results explain the mechanism of the porous structure destruction and positive influence of the osteointegration effect on the strength properties. Numerical calculations are confirmed by experimental data of the porous samples during compression testing.

Finite Element Analysis of the Influence of the Orthodontic Appliance Design on the Maxillary Expansion

In present paper the results of the stress-strain state finite element analysis of the humanmaxillary complex after activating orthodontic

appliance are performed. Skull and abutment teeth models are obtained on the basis of the tomographic data of the dry intact adult

skull. Orthodontic appliance designs are differ in the arrangement of rods and screws relative to the sky. The equivalent stresses and

displacements of the maxillary bones and supporting the teeth are evaluated. It is shown that the horizontal location of orthodontic