Cite this article as:

??? Inverse problem for Sturm–Liouville operator on the half-line having nonintegrable singularity in an interior point . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2012, vol. 12, iss. 4, pp. 49-55. DOI: https://doi.org/10.18500/1816-9791-2012-12-4-49-55


Language: 
Russian
Heading: 
UDC: 
517.927

Inverse problem for Sturm–Liouville operator on the half-line having nonintegrable singularity in an interior point

Abstract: 

The inverse problem of recovering Sturm–Liouville operators on the half-line with a nonintegrable Bessel-type singularity in an interior point from the given Weyl function is studied. The corresponding uniqueness theorem is proved, a constructive procedure for the solution of the inverse problem is provided. Necessary and sufficient conditions of the solvability of the inverse problem are obtained. 

References
1. Марченко В. А. Операторы Штурма–Лиувилля и их
приложения. Киев : Наук. думка, 1977. 330 с.
2. Левитан Б. М. Обратные задачи Штурма–Лиувил-
ля. М. : Наука, 1984. 239 с.
3. Юрко В. А. Введение в теорию обратных спектраль-
ных задач. М. : Физматлит, 1984. 384 с.
4. Yurko V. A. Method of Spectral Mappings in the
Inverse Problem Theory // Inverse and Ill-posed Problems
Series. Utrecht : VSP, 2002. 303 p.
5. Юрко В. А. О восстановлении сингулярных несамо-
сопряженных дифференциальных операторов с особен-
ностью внутри интервала // Дифференциальные урав-
нения. 2002. Т. 38, № 5. С. 645–659.
6. Fedoseev A. E. Inverse problems for differential
equations on the half-line having a singularity in an
interior point // Tamkang J. of Math. 2011. Vol. 42, № 3.
P. 343–354.
 
Full text: