Cite this article as:

Yurko V. A. Inverse Spectral Problem for Discrete Operators in Topological Spaces. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 4, pp. 439-447. DOI: https://doi.org/10.18500/1816-9791-2014-14-4-439-447


Language: 
Russian
Heading: 
UDC: 
517.984

Inverse Spectral Problem for Discrete Operators in Topological Spaces

Abstract: 

An inverse spectral problem for discrete operators of a triangular structure in topological spaces is studied. A constructive procedure for the solution of the inverse problem is provided. Necessary and sufficient conditions for its solvability are obtained.

References
  1. Atkinson F. Discrete and Continuous Boundary Problems. N. Y. : Academic Press, 1964.
  2. Nikishin E. M. The discrete Sturm – Liouville operator and some problems of the theory of functions // J. Soviet Math. 1986. Vol. 35. P. 2679–2744.
  3. Гусейнов Г. Ш. Определение бесконечной несамосопряженной матрицы Якоби по ее обобщенной спектральной функции // Матем. заметки. 1978. Т. 23, вып. 2. С. 237–248.
  4. Yurko V. A. On higher-order difference operators // J. Differ. Equ. Appl. 1995. Vol. 1. P. 347–352. Inverse Spectral Problem for Discrete Operators in Topological Spaces
Full text: