Cite this article as:
Yurko V. A. Inverse Spectral Problem for Discrete Operators in Topological Spaces. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 4, pp. 439-447. DOI: https://doi.org/10.18500/1816-9791-2014-14-4-439-447
Language:
Russian
Heading:
UDC:
517.984
Inverse Spectral Problem for Discrete Operators in Topological Spaces
Abstract:
An inverse spectral problem for discrete operators of a triangular structure in topological spaces is studied. A constructive procedure for the solution of the inverse problem is provided. Necessary and sufficient conditions for its solvability are obtained.
Key words:
References
- Atkinson F. Discrete and Continuous Boundary Problems. N. Y. : Academic Press, 1964.
- Nikishin E. M. The discrete Sturm – Liouville operator and some problems of the theory of functions // J. Soviet Math. 1986. Vol. 35. P. 2679–2744.
- Гусейнов Г. Ш. Определение бесконечной несамосопряженной матрицы Якоби по ее обобщенной спектральной функции // Матем. заметки. 1978. Т. 23, вып. 2. С. 237–248.
- Yurko V. A. On higher-order difference operators // J. Differ. Equ. Appl. 1995. Vol. 1. P. 347–352. Inverse Spectral Problem for Discrete Operators in Topological Spaces
Full text:
61