Cite this article as:

Lapina E. O., Semenov A. A. Investigation of Strength and Buckling of Orthotropic Conical Shells and Conical Panels. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2020, vol. 20, iss. 1, pp. 79-92. DOI: https://doi.org/10.18500/1816-9791-2020-20-1-79-92


Published online: 
02.03.2020
Language: 
Russian
Heading: 
UDC: 
539.3

Investigation of Strength and Buckling of Orthotropic Conical Shells and Conical Panels

Abstract: 

In the construction, thin-walled shell structures are used to cover the buildings of large areas, such as stadiums, hangars, circuses, airports. In this paper, the strength and buckling of closed conical shells as well as their panels are studied. The geometric nonlinearity and transverse shifts are taken into account. A mathematical model is used in the form of a functional of the total potential energy of deformation. Also expressions for deformations, forces and moments are given. The calculation program is implemented in the MatLab environment. The algorithm is based on the Ritz method and Newton’s method for solving a system of nonlinear algebraic equations. Variants of approximating functions for a closed shell and for its panel are shown. The values of critical loads are found, the dependence of the deflection on the load, the dependence of the stresses on the load is obtained, and the deflection field is shown at the subcritical and at the supercritical moment. The fields of various stress components are given at the moment when the strength conditions begin to fail. The orthotropy of the material is taken into account.

References
  1. Hagihara S., Miyazaki N. Bifurcation Buckling Analysis of Conical Roof Shell Subjected to Dynamic Internal Pressure by the Finite Element Method // Journal of Pressure Vessel Technology. 2003. Vol. 125, iss. 1. P. 78–84. DOI: https://doi.org/10.1115/1.1533801
  2. Krivoshapko S. N. Research on General and Axisymmetric Ellipsoidal Shells Used as Domes, Pressure Vessels, and Tanks // Applied Mechanics Reviews. 2007. Vol. 60, iss. 6. P. 336–355. DOI: https://doi.org/10.1115/1.2806278
  3. Sosa E. M., Godoy L. A. Challenges in the computation of lower-bound buckling loads for tanks under wind pressures // Thin-Walled Structures. 2010. Vol. 48, iss. 12. P. 935–945. DOI: https://doi.org/10.1016/j.tws.2010.06.004
  4. Gavryushin S. S., Nikolaeva A. S. Method of change of the subspace of control parameters and its application to problems of synthesis of nonlinearly deformable axisymmetric thin-walled structures // Mechanics of Solids. 2016. Vol. 51, iss 3. P. 339–348. DOI: https://doi.org/10.3103/S0025654416030110
  5. Solovei N. A., Krivenko O. P., Malygina O. A. Finite element models for the analysis of nonlinear deformation of shells stepwise-variable thickness with holes, channels and cavities // Magazine of Civil Engineering. 2015. Vol. 53, iss. 1. P. 56–69. DOI: https://doi.org/10.5862/MCE.53.6
  6. Баранова Д. А., Волынин А. Л., Карпов В. В. Сравнительный анализ расчета прочности и устойчивости подкрепленных оболочек на основе ПК оболочка и ПК ANSYS // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2010. Т. 10, вып. 4. С. 23–27. DOI: https://doi.org/10.18500/1816-9791-2010-10-4-23-27
  7. Karpov V. V. Models of the shells having ribs, reinforcement plates and cutouts // International Journal of Solids and Structures. 2018. Vol. 146. P. 117–135. DOI: https://doi.org/10.1016/j.ijsolstr.2018.03.024
  8. Trach V. M. Stability of conical shells made of composites with one plane of elastic symmetry // International Applied Mechanics. 2007. Vol. 43, iss. 6. P. 662–669. DOI: https://doi.org/10.1007/s10778-007-0065-z
  9. Shadmehri F., Hoa S. V., Hojjati M. Buckling of conical composite shells // Composite Structures. 2012. Vol. 94, iss. 2. P. 787–792. DOI: https://doi.org/10.1016/j.compstruct.2011.09.016
  10. Gupta A. K., Patel B. P., Nath Y. Progressive damage of laminated cylindrical/conical panels under meridional compression // European Journal of Mechanics – A/Solids. 2015. Vol. 53. P. 329–341. DOI: https://doi.org/10.1016/j.euromechsol.2015.05.013
  11. Dung D. V., Chan D. Q. Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT // Composite Structures. 2017. Vol. 159. P. 827–841. DOI: https://doi.org/10.1016/j.compstruct.2016.10.006
  12. Dung D. V., Hoa L. Kh., Nga N. T., Anh L. T. N. Instability of eccentrically stiffened functionally graded truncated conical shells under mechanical loads // Composite Structures. 2013. Vol. 106. P. 104–113. DOI: https://doi.org/10.1016/j.compstruct.2013.05.050
  13. Dai Q., Cao Q. Parametric instability analysis of truncated conical shells using the Haar wavelet method // Mechanical Systems and Signal Processing. 2018. Vol. 105. P. 200–213. DOI: https://doi.org/10.1016/j.ymssp.2017.12.004
  14. Mehri M., Asadi H., Kouchakzadeh M. A. Computationally efficient model for flow-induced instability of CNT reinforced functionally graded truncated conical curved panels subjected to axial compression // Computer Methods in Applied Mechanics and Engineering. 2017. Vol. 318. P. 957–980. DOI: https://doi.org/10.1016/j.cma.2017.02.020
  15. Najafov A. M., Mammadov Z., Kadioglu F., Zerin Z., Sofiyeve A. H., Tekin G. Nonlinear Behavior of Composite Truncated Conical Shells Subjected to the Dynamic Loading // Acta Physica Polonica A. 2015. Vol. 127, № 4. P. 904–906. DOI: https://doi.org/10.12693/APhysPolA.127.904
  16. Sofiyev A. H., Kuruoglu N. Domains of dynamic instability of FGM conical shells under time dependent periodic loads // Composite Structures. 2016. Vol. 136. P. 139–148. DOI: https://doi.org/10.1016/j.compstruct.2015.09.060
  17. Sofiyev A. H., Pancar E. B. The effect of heterogeneity on the parametric instability of axially excited orthotropic conical shells // Thin-Walled Structures. 2017. Vol. 115. P. 240– 246. DOI: https://doi.org/10.1016/j.tws.2017.02.023
  18. Krysko V. A., Awrejcewicz J., Shchekaturova T. V. Chaotic vibrations of spherical and conical axially symmetric shells // Archive of Applied Mechanics. 2005. Vol. 74, iss. 5–6. P. 338–358. DOI: https://doi.org/10.1007/BF02637035
  19. Patel B. P., Khan K., Nath Y. A new constitutive model for bimodular laminated structures: Application to free vibrations of conical/cylindrical panels // Composite Structures. 2014. Vol. 110. P. 183–191. DOI: https://doi.org/10.1016/j.compstruct.2013.11.008
  20. Qu Y., Chen Y., Long X., Hua H., Meng G. A modified variational approach for vibration analysis of ring-stiffened conical-cylindrical shell combinations // European Journal of Mechanics – A/Solids. 2013. Vol. 37. P. 200–215. DOI: https://doi.org/10.1016/j.euromechsol.2012.06.006
  21. Shul’ga N. A., Bogdanov S. Yu. Forced Axisymmetric Nonlinear Vibrations of Reinforced Conical Shells // International Applied Mechanics. 2003. Vol. 39, iss. 12. P. 1447–1451. DOI: https://doi.org/10.1023/B:INAM.0000020829.56530.22
  22. Demir ¸C., Mercan K., Civalek O. ¨ Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel // Composites Part B : Engineering. 2016. Vol. 94. P. 1–10. DOI: https://doi.org/10.1016/j.compositesb.2016.03.031
  23. Khan A. H., Patel B. P. On the nonlinear dynamics of bimodular laminated composite conical panels // Nonlinear Dynamics. 2015. Vol. 79, iss. 2. P. 1495–1509. DOI: https://doi.org/10.1007/s11071-014-1756-8
  24. Zerin Z. The effect of non-homogeneity on the stability of laminated orthotropic conical shells subjected to hydrostatic pressure // Structural Engineering and Mechanics. 2012. Vol. 43, № 1. P. 89–103. DOI: https://doi.org/10.12989/sem.2012.43.1.089
  25. Hao Y. X., Yang S. W., Zhang W., Yao M. H., Wang A. W. Flutter of high-dimension nonlinear system for a FGM truncated conical shell // Mechanics of Advanced Materials and Structures. 2018. Vol. 25, iss. 1. P. 47–61. DOI: https://doi.org/10.1080/ 15376494.2016.1255815
  26. Maksimyuk V. A., Storozhuk E. A., Chernyshenko I. S. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review) // International Applied Mechanics. 2012. Vol. 48, iss. 6. P. 613–687. DOI: https://doi.org/10.1007/s10778-012-0544-8
  27. Sankar A., Natarajan S., Merzouki T., Ganapathi M. Nonlinear Dynamic Thermal Buckling of Sandwich Spherical and Conical Shells with CNT Reinforced Facesheets // International Journal of Structural Stability and Dynamics. 2016. P. 1750100. DOI: https://doi.org/10.1142/S0219455417501000 28. Watts G., Singha M. K., Pradyumna S. Nonlinear bending and snap-through instability analyses of conical shell panels using element free Galerkin method // Thin-Walled Structures. 2018. Vol. 122. P. 452–462. DOI: https://doi.org/10.1016/j.tws.2017.10.027
  28. Semenov A. A. Strength and stability of geometrically nonlinear orthotropic shell structures // Thin-Walled Structures. 2016. Vol. 106. P. 428–436. DOI: https://doi.org/10.1016/j.tws.2016.05.018
  29. Семенов А. А. Анализ прочности оболочечных конструкций из современных материалов в соответствии с различными критериями прочности // Diagnostics, Resource and Mechanics of Materials and Structures. 2018. № 1. P. 16–33. DOI: https://doi.org/10.17804/2410-9908.2018.1.016-033
  30. Смердов А. А., Буянов И. А., Чуднов И. В. Анализ оптимальных сочетаний требований к разрабатываемым углепластикам для крупногабаритных ракетнокосмических конструкций // Изв. вузов. Машиностроение. 2012. № 8. С. 70–77. DOI: https://doi.org/10.18698/0536-1044-2012-8-70-77
  31. Цепенников М. В., Повышев И. А., Сметанников О. Ю. Верификация численной методики расчета разрушения конструкций из композиционных материалов // Вестн. ПНИПУ. Прикладная математика и механика. 2012. № 10. P. 225–241.
Full text:
106