Cite this article as:

Lukomskii S. F. Matrix representation of dilation operator on the product of zero-dimensional locally compact Abelian groups. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 8-14. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-8-14


Language: 
Russian
Heading: 

Matrix representation of dilation operator on the product of zero-dimensional locally compact Abelian groups

Abstract: 

In the real wavelet analysis dd-dimensional dilation operator may be written with the help of an integer-valued d×dmatrix. We find the matrix representation of the dilation operator on the product of zero-dimensional locally compact Abelian groups. 

References

1. Khrennikov A. Yu., Shelkovich V. M. P-adic multidimensional

wavelets and their application to p-adic

pseudo-differential operators. Preprint, 2006. Available at:

http://arxiv.org/abs/math-ph/0612049 (accessed 28 September

2012).

2. Shelkovich V. M., Skopina M. A. P-adic Haar multiresolution

analysis and pseudo-differential operators. J.

Fourier Anal. Appl., 2009, vol. 15, no. 3, pp. 366–393.

3. Novikov I. Ya., Protasov V. Yu., Skopina M. A.

Wavelet Theory. Translations Mathematical Monographs,

vol. 239. New York, Amer. Math. Soc., 2011, 506 p.

4. King E. J., Skopina M. A. Quincunx Multiresolution

Analysis for L2(Q2

2). P-adic Numbers. Ultrametric

Analysis and Applications, 2010, vol. 2, no. 3, pp. 222–

231.

5. Lukomskii S. F. Multiresolution analysis on product of

zero-dimensional Abelian groups. J. Math. Anal. Appl.,

2012, vol. 385, pp. 1162–1178.

6. Lukomskii S. F. Haar System on a product of zerodimensional

compact group. Centr. Eur. J. Math., 2011,

vol. 9, no. 3, pp. 627–639.

7. Agaev G. N., Vilenkin N. Ya., Dzafarli G. M.,

Rubinstein A. I. Mul’tiplikativnye sistemy funktsii

i garmonicheskii analiz na nul’mernykh gruppakh

[Multiplicative Systems of Functions and Harmonic

Analysis on Zero-Dimensional Groups]. Baku, Elm, 1981.

180 p. (in Russian).

8. Kargapolov M. I., Merzljakov Ju. I. Fundamentajs of

the Theory of Groups. New York, Springer-Verlag, 1979,

203 p. (Russ. ed.: Kargapolov M. I., Merzljakov Ju. I.

Osnovy teorii grupp. Moscow, Nauka, 1982. 288 p.)

9. Lukomskii S. F. Haar system on the product of groups

of p-adic integer. Math. Notes, 2011, vol. 90, iss. 4,

pp. 517–532.

Short text (in English): 
Full text: