Cite this article as:
Fedoseev A. E. Necessary and Sufficient Conditions for the Solvability of the Inverse Problem for Sturm–Liouville Operators with a Nonintegrable Singularity Inside a Finite Interval. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 3, pp. 59-64. DOI: https://doi.org/10.18500/1816-9791-2013-13-3-59-64
Necessary and Sufficient Conditions for the Solvability of the Inverse Problem for Sturm–Liouville Operators with a Nonintegrable Singularity Inside a Finite Interval
The inverse spectral problem of recovering Sturm–Liouville operators on a finite interval with a nonintegrable Bessel-type singularity
in an interior point from the given spectral data is studied. A corresponding uniqueness theorem is proved, a constructive procedure
for the solution of the inverse problem is provided. Necessary and sufficient conditions for the solvability of the inverse problem are
obtained.
1. Marchenko V. A. Sturm–Liouville operators and app- lications. Basel, Birkh¨user, 1986. 367 p. (Russ. ed.: Marchenko V. A. Operatory Shturma–Liuvillia i ikh prilozheniia. Kiev, Naukova Dumka, 1977. 331 p.) 2. Levitan B. M. Inverse Sturm–Liouville problems. Utrecht, VNU, 1987, 240 p. (Russ. ed.: Levitan B. M. Obratnye zadachi Shturma–Liuvillia. Moscow, Nauka, 1984, 239 p.) 3. Yurko V. A. Vvedenie v teoriiu obratnykh spekt- ral’nykh zadach [Introduction to the theory of inverse spectral problems]. Moscow, Fizmatlit, 1984, 384 p. (in Russian). 4. Yurko V. A. Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series. Utrecht, VSP, 2002, 303 p.