Cite this article as:
Lukomskii S. F., Mushko M. D. On Binary B-splines of Second Order. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2018, vol. 18, iss. 2, pp. 172-182. DOI: https://doi.org/10.18500/1816-9791-2018-18-2-172-182
On Binary B-splines of Second Order
1. Curry H. B., Schoenberg I. J., On spline distributions and their limits: the Pollya distributions. Bull. Amer. Math. Soc., 1947, vol. 53, Abstract 380t, p. 1114.
2. Schoenberg I. J. On spline functions (with a supplement by T. N. E. Greville). Inequalities I. Ed. O. Shisha. New York, Academic Press, 1967, pp. 255–291.
3. Schoenberg I. J. Contributions to problem of approximation of equidistant data by analytic functions. Quart. Appl. Math., 1946, vol. 4, pp. 45–99, 112–141.
4. Alberg J. H., Nilson E. N., Walsh J. L. T he theory of splines and their Applications. Academic Press, 1967. 296 p.
5. De Boor C. A practical guide to splines. New York, Springer-Verlag, 2001. 348 p. (Russ.ed.: Moscow, Radio i sviaz’, 1985. 304 p.)
6. Str¨omberg J.-O. A modified Franklin system and higher-order spline systems on Rn as unconditional bases for Hardy spaces. Conference in Harmonic Analysis in Honor of A.Zigmund (The Wadsworth Mathematics Series). Eds. W. Beckner, A. P. Calderon. Springer, 1982, vol. 2, pp. 475–494.
7. Battle G. A block spin construction of ondelettes. Part 1: Lemarie functions. Comm. Math. Phys., 1987, vol. 110, pp. 601–615.
8. Lemarie P.-G., Meyer Y. Ondelettes et bases Hilbertiennes. Rev. Math. Iber., 1987, vol. 2, no. 1/2, pp. 1–18.
9. Chumachenko S. On an analogue of the Faber – Schauder system. Trudy matematicheskogo centra N. I. Lobachevsky [Proceedings of the N. I. Lobachevsky Mathematical Center]. 2016, vol. 53, pp. 163–164 (in Russian).
10. Mathematics in image processing. Ed. Hongkai Zhao. IAS/Park City Mathematics Series. 2013, vol . 19. 245 p.
11. De Boor C., DeVore R. A., Ron A. Approximation from shift-invariant subspaces of L2(Rd). Transactions of the American Mathematical Society, 1994, vol. 341, no. 2, pp. 787–806.
12. De Boor C., DeVore R. A., Ron A. On the construction of multivariante (pre) wavelets. Constructive approximation, 1993, vol. 9, no. 2, pp. 123–166.
13. Jia R. Q., Shen Z. Multiresolution and Wavelets. Proc. Edinb. Math. Soc., II. Ser., 1994, vol. 37, no. 2, pp. 271–300.
14. Jia R. Q., Micchelli C. A. Using the refinement equations for the construction of pre- wavelets II: Powers of two. Curves and surfaces. Eds. P.-J. Laurent, A. Le Mehaute, L. L. Schumaker. Elsevier Inc., 1999, pp. 209–246.
15. Chui Ch. K. An Introduction to Wavelets. San Diego, CA, USA, Academic Press, 1992. 264 p. (Russ. ed.: Moscow, Mir, 2001. 412 p.)