Cite this article as:

Bakhtina Z. I. On Stilties Differential on Time Scales. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2009, vol. 9, iss. 2, pp. 3-5. DOI: https://doi.org/10.18500/1816-9791-2009-9-2-3-5


Language: 
Russian
Heading: 
UDC: 
517.927

On Stilties Differential on Time Scales

Abstract: 

In this paper we apply the method of Stilties differentials offered by U.V. Pokornyi to the theory of Dynamic Equations on Time Scales. It’s possibly to put this theory on serious mathematical basis.

References

1. Покорный Ю.В., Зверева М.Б., Шабров С.А. Осцилляционная теория Штурма – Лиувилля для импульсных задач // Успехи мат. наук. 2008. Т. 63, вып. 1(379). С. 111–154.

2. Бодин С., Бохнер М., Лутц Д. Асимптотическое поведение решений динамических уравнений // Совр. мат. Фундаментальные направления. 2003. Т. 1. С. 30–39.

3. Saker S.H. Oscillation of Second-Order Forced Nonlinear Dynamic Equations on Time Scales // Electronic J. of Qualitative Theory of Differential Equations. 2005. № 23. P. 1–17.

4. Hilger S. Analysis on measure chains — a unified
approach to continuous and discrete calculus // Results Math. 1990. V. 18. P. 18–56.
5. Bohner M., Peterson A. Dynamic Equations on Time Scales: an Introduction with Applications. Boston: Birkh¨ auser Boston Inc., 2001. 358 с.
6. Dosly O., Hilger S. A necessary and sufficient condition for oscillation of the Sturm Liouville dynamic equation on time scales // J. Comp. Appl. Math. 2002. V. 141. P. 147–158.
7. Erbe L., Peterson A. Riccati equations on a measure chain // Dynamic systems and applications 3 (Atlanta, GA, 1999), Dynamic, Atlanta, GA, 2001. P. 193–199.
 

Full text: