Cite this article as:

Степаненко Д. С. On verification of Brauer's theorem concerning Artin's L-functions of number fields . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2012, vol. 12, iss. 4, pp. 31-34. DOI: https://doi.org/10.18500/1816-9791-2012-12-4-31-34


Language: 
Russian
Heading: 
UDC: 
501.1

On verification of Brauer's theorem concerning Artin's L-functions of number fields

Abstract: 

This paper investigates problem of analytic continuation of Artin's L-functions. One refinement of Brauer's theorem was obtained. It states that in the case of non-main character all possible poles of Artin's L-functions should lay on the critical line. 

References
1. Artin E. Uber eine neue Art von ¨ L-Reihen // Abh.
Math. Sem. Hamburgischen Univ. 1923. Vol. 3. P. 89–
108.
2. Хейльброн Х. ζ-функции и L-функции // Алгебраи-
ческая теория чисел М. : Мир, 1969. С. 310–348.
3. Brauer R. On Artin’s L-series with general group
characters // Ann. of Math. 1947. Vol. 48. P. 502–514.
4. Кассел Дж., Фрелих А. Нормы из неабелевых рас-
ширений // Алгебраическая теория чисел. М. : Мир,
1969. С. 476
Full text: