Cite this article as:
Kornev V. V., Khromov A. P. Resolvent Approach to Fourier Method in a Mixed Problem for Non-homogeneous Wave Equation. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 4, pp. 403-413. DOI: https://doi.org/10.18500/1816-9791-2016-16-4-403-413
Resolvent Approach to Fourier Method in a Mixed Problem for Non-homogeneous Wave Equation
Fourier method of obtaining classic solution is being justified in a mixed problem for non-homogeneous wave equation with a complex potential and fixed boundary conditions under minimal conditions on initial data. The proof is based on resolvent approach which does not need any information on eigen and associated functions of the corresponding spectral problem.
1. Burlutskaya M. Sh., Khromov A. P. Resolvent approach in the Fourier method. Dokl. Math., 2014, vol. 90, no. 2, pp. 545–548. DOI: https://doi.org/10.1134/S1064562414060076.
2. Burlutskaya M. Sh., Khromov A. P. The resolvent approach for the wave equation. Comput. Math. Math. Phys., 2015, vol. 55, iss. 2, pp. 227–239. DOI: https://doi.org/10.1134/S0965542515020050.
3. Kornev V. V., Khromov A. P. Resolvent approach to the Fourier method in a mixed problem for the wave equation. Comput. Math. Math. Phys., 2015, vol. 55, iss. 4, pp. 618–627. DOI: https://doi.org/10.1134/S0965542515040077.
4. Kornev V. V., Khromov A. P. A resolvent approach in the Fourier method for the wave equation: the non-selfadjoint case. Comput. Math. Math. Phys., 2015, vol. 55, iss. 7, pp. 1138–1149. DOI: https://doi.org/10.1134/S0965542515070088.
5. Petrovskii I. G. Lektsii ob uravneniiakh s chastnymi proizvodnymi [Lectures on Partial Differential Equations]. Moscow, Fizmatgiz, 1961. 400 p. (in Russian).
6. Chernyatin V. A. Obosnovanie metoda Fur’e v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh [Justification of the Fourier method in a mixed problem for partial differential equations]. Moscow, Moscow Univ. Press, 1991. 112 p. (in Russian).
7. Rasulov M. L. Metod konturnogo integrala [The method of the contour integral]. Moscow, Nauka, 1964. 462 p. (in Russian).
8. Vagabov A. I. Vvedenie v spektral’nuiu teoriiu differentsial’nykh operatorov [Introduction to the spectral theory of differential operators]. Rostovon-Don, Rostov Univ. Press, 1994. 106 p. (in Russian).