Cite this article as:

Gumenuk P. A. Siegеl disks and basins of attraction for families of analytic functions. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2005, vol. 5, iss. 1, pp. 12-?.


Published online: 
12.02.2020
Language: 
Russian
Heading: 
UDC: 
517.538.7

Siegеl disks and basins of attraction for families of analytic functions

Abstract: 

Let be a hyperbolic domain, , let ∆ be a Stolz angle at with respect to the unit disk D, and W a domain containing the point λ0 . Consider an analytic family ; consisting of analytic functions in the domain U with the following expansion , λ ∈ W, for small z. Let be the maximal domain A ⊂ U, such that 0 ∈ A and f l (A) ⊂ A, or the set {0} if there exist no such domains. We prove, that if a sequence converges to λ0 and , then the sequence of the domains converges to S as to the kernel. An example shows, that the analogous statement for convergence with respect to the Hausdorff metric does not hold. In the case we obtain an asymptotic estimate for the size of the neighbourhood V = V (K) of the point λ0 , such that a given compact K ⊂ S lies in A* (0, f l , U) for all .

References

1. Милнор Дж. Голоморфная динамика / Пер. с англ. Ижевск, 2000 (Milnor J. Dynamics in One Complex Variable. Vieweg, 2000) .
2. Bargmann D. Conjugations on rotation domains as limit functions of the geometric means of the iterates // Annales Academi Scientiarum Fennic. Mathematica. 1998. V. 23. P. 507–524.
3. Beardon A.F. Iteration of Rational Functions. N.Y., 1991.
4. Carleson L., Gamelin T.W. Complex Dynamics. N.Y., 1993.
5. Еременко А.Э., Любич М.Ю. Динамика аналитиче-ских отображений // Алгебра и анализ. 1989. Т. 1, № 3. С. 1–70.
6. Bergweiler W. An introduction to complex dynamics // Textos de Matematica Universidade de Coimbra. 1995. Ser. B. № 6. P. 1–37.
7. Bergweiler W. Iteration of meromorphic functions // Bull. Amer. Math. Soc. 1993. V. 29, № 2. P. 151–188.
8. Голузин Г.М. Геометрическая теория функций комплексного переменного. М., 1966.
9. Kriete H. Approximation of indifferent cycles // Math. Gottingensis: preprint series. Gottingen, 1996. № 3.
10. Бухштаб А.А. Теория чисел. М., 1966.
11. Douady A. Does the Julia set depend continuously on the polynomial? // Proc. Symp. in Appl. Math. 1994. V. 49. P. 91

Full text: