Cite this article as:

Baryshev A. A., Lychev S. A., Manzhirov A. V. The equilibrium equations of shells in the coordinates of the general form . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 44-53. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-44-53


Language: 
Russian
Heading: 

The equilibrium equations of shells in the coordinates of the general form

Abstract: 

A mathematical model of homogeneous elastic shells is consider under kinematics Reissner–Mindlin type. Through direct (coordinateless) methods of the tensor calculus equations of equilibrium are obtained in terms of displacements in an arbitrary (not necessarily orthogonal) coordinate system, taking into account the asymmetry of the location of the front surface. For a spherical shells proposed procedure for constructing solutions, based on the method of spectral decomposition, which describes the stress-strain state at the potential power and torque static loads. 

References

1. Altenbach H., Eremeyev V. A., Morozov N. F. Linear

theory of shells taking into account surface stresses.

Doklady Physics, 2009, vol. 54, no. 12, pp. 531–535.

2. Shen H. S. Functionally graded materials : nonlinear

analysis of plates and shells. CRC Press, 2009, 280 p.

3. Lychev S. A., Lycheva T. N., Manzhirov A. V.

Unsteady vibration of a growing circular plate. Mech.

Solids, 2011, vol. 46, no. 2, pp. 325–333.

4. Leissa A. W. Vibration of shells. Ohio, Acoustical

Society of America, 1993. 428 p.

5. Truesdell C., Toupin R. A. The classical field

theories. Handbuch der Physik [Encyclopedia of Physics].

Vol. III/1 / ed. S. Fl¨ugge. Berlin, Springer-Verlag, 1960,

pp. 226–858 (in German).

6. Noll W. Materially uniform simple bodies with

inhomogeneities. Arch. Rat. Mech. Anal., 1956, vol. 27,

no. 1, pp. 1–32.

7. Epstein M. The geometrical language of continuum

mechanics. Cambridge, Cambridge University Press,

2010.

8. Gurtin M. E., Murdoch A. I. A continuum theory

of elastic material surfaces. Arch. Ration. Mech. Anal.,

1975, vol. 57, no. 4, pp. 291–323.

9. Maugin G. A. Material inhomogeneities in elasticity.

London, Chapman and Hall, 1993, 280 p.

10. Cohen H., Wang C.-C. Some equilibrium problems for

compressible, anisotropic, laminated nonlinearly elastic

bodies. Arch. Ration. Mech. Anal., 1992, vol. 119, no. 9,

pp. 1–34.

11. Lychev S. A., Baryshev A. A. Equilibrium equations

for material uniform and inhomogeneous laminated shells.

PNRPU Mechanics Bulletin. Mechanics, 2012, no. 4,

pp. 42–65 (in Russian).

12. Lurie A. I. Nelineinaia teoriia uprugosti [Nonlinear

theory of elasticity]. Moscow, Nauka, 1980, 512 p. (in

Russian).

13. Gibbs J. W. Elements of vector analysis. New Haven,

1884.

14. Eremeev V. A., Zubov L. M. Mekhanika uprugikh

obolochek [Mechanics of Elastic Shells]. Moscow, Nauka,

2008. 280 p. (in Russian).

15. Grigoliuk E. I. Selezov I. T. Neklassicheskie teorii

kolebanii sterzhnei, plastin i obolochek [Non-classical

theory of vibrations of rods, plates and shells]. Moscow,

VINITI, 1973, 272 p. (in Russian).

16. Pelekh B. L. Obobshchennaia teoriia obolochek

[Generalized theory of shells]. L’vov, Vyshcha shkola,

1978, 159 p. (in Russian).

17. Novozhilov V. V. Teoriia tonkikh obolochek [The

theory of thin shells]. Leningrad, Sudpromgiz, 1962,

431 p.

18. Kabrits S. A., Mikhailovskii E. I., Tovstik P. E.,

Chernykh K. F., Shamina V. A. Obshchaia nelineinaia

teoriia uprugikh obolochek [General nonlinear theory

of elastic shells]: ed. K. F. Chernyh, S. A. Kabrica.

St. Petersburg, St. Petersburg Press, 2002, 388 p. (in

Russian).

19. Chapelle D., Bathe K. J. The Finite Element Analysis

of Shells — Fundamentals. New York, Springer, 2011,

Vol. XV, 410 p.

20. Mikhailovskii E. I. Klassicheskaia teoriia obolochek

[The classical theory of shells]. Vestnik Syktyvkarskogo

universiteta. Ser. 1.: Math. Mech. Inform., 2006, no. 6,

pp. 123–164 (in Russian).

21. Lebedev L. P., Cloud M. J, Eremeyev V. A. Advanced

Engineering Analysis: Calculus of Variations and

Functional Analysis with Applications in Mechanics.

New Jersey, World Scientific, 2012. 499 p.

22. Zhilin P. A. Prikladnaia mekhanika. Osnovy teorii

obolochek [Applied Mechanics. Foundations of the Theory

of Shells]. St. Petersburg, St. Petersburg State Polytech.

Univer. Press, 2006, 167 p. (in Russian).

23. Lizarev A. D., Rostanina N. B. Kolebaniia metal-

lopolimernykh i odnorodnykh sfericheskikh obolochek

[Vibration in metal- and homogeneous spherical shells].

Minsk, Nauka i tekhnika, 1984, 192 p. (in Russian).

24. Senitskii Yu. E., Lychev S. A. Dinamika trekhsloinykh

sfericheskikh obolochek nesimmetrichnoi struktury [The

dynamics of three-layer spherical shells asymmetric

structure]. Trudy XVIII mezhdunarodnoi konferentsii po

teorii obolochek i plastin. Saratov, 1997, vol. 1, pp. 47–52

(in Russian).

Short text (in English): 
Full text: