Cite this article as:
Baryshev A. A., Lychev S. A., Manzhirov A. V. The equilibrium equations of shells in the coordinates of the general form . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pp. 44-53. DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-44-53
The equilibrium equations of shells in the coordinates of the general form
A mathematical model of homogeneous elastic shells is consider under kinematics Reissner–Mindlin type. Through direct (coordinateless) methods of the tensor calculus equations of equilibrium are obtained in terms of displacements in an arbitrary (not necessarily orthogonal) coordinate system, taking into account the asymmetry of the location of the front surface. For a spherical shells proposed procedure for constructing solutions, based on the method of spectral decomposition, which describes the stress-strain state at the potential power and torque static loads.
1. Altenbach H., Eremeyev V. A., Morozov N. F. Linear
theory of shells taking into account surface stresses.
Doklady Physics, 2009, vol. 54, no. 12, pp. 531–535.
2. Shen H. S. Functionally graded materials : nonlinear
analysis of plates and shells. CRC Press, 2009, 280 p.
3. Lychev S. A., Lycheva T. N., Manzhirov A. V.
Unsteady vibration of a growing circular plate. Mech.
Solids, 2011, vol. 46, no. 2, pp. 325–333.
4. Leissa A. W. Vibration of shells. Ohio, Acoustical
Society of America, 1993. 428 p.
5. Truesdell C., Toupin R. A. The classical field
theories. Handbuch der Physik [Encyclopedia of Physics].
Vol. III/1 / ed. S. Fl¨ugge. Berlin, Springer-Verlag, 1960,
pp. 226–858 (in German).
6. Noll W. Materially uniform simple bodies with
inhomogeneities. Arch. Rat. Mech. Anal., 1956, vol. 27,
no. 1, pp. 1–32.
7. Epstein M. The geometrical language of continuum
mechanics. Cambridge, Cambridge University Press,
2010.
8. Gurtin M. E., Murdoch A. I. A continuum theory
of elastic material surfaces. Arch. Ration. Mech. Anal.,
1975, vol. 57, no. 4, pp. 291–323.
9. Maugin G. A. Material inhomogeneities in elasticity.
London, Chapman and Hall, 1993, 280 p.
10. Cohen H., Wang C.-C. Some equilibrium problems for
compressible, anisotropic, laminated nonlinearly elastic
bodies. Arch. Ration. Mech. Anal., 1992, vol. 119, no. 9,
pp. 1–34.
11. Lychev S. A., Baryshev A. A. Equilibrium equations
for material uniform and inhomogeneous laminated shells.
PNRPU Mechanics Bulletin. Mechanics, 2012, no. 4,
pp. 42–65 (in Russian).
12. Lurie A. I. Nelineinaia teoriia uprugosti [Nonlinear
theory of elasticity]. Moscow, Nauka, 1980, 512 p. (in
Russian).
13. Gibbs J. W. Elements of vector analysis. New Haven,
1884.
14. Eremeev V. A., Zubov L. M. Mekhanika uprugikh
obolochek [Mechanics of Elastic Shells]. Moscow, Nauka,
2008. 280 p. (in Russian).
15. Grigoliuk E. I. Selezov I. T. Neklassicheskie teorii
kolebanii sterzhnei, plastin i obolochek [Non-classical
theory of vibrations of rods, plates and shells]. Moscow,
VINITI, 1973, 272 p. (in Russian).
16. Pelekh B. L. Obobshchennaia teoriia obolochek
[Generalized theory of shells]. L’vov, Vyshcha shkola,
1978, 159 p. (in Russian).
17. Novozhilov V. V. Teoriia tonkikh obolochek [The
theory of thin shells]. Leningrad, Sudpromgiz, 1962,
431 p.
18. Kabrits S. A., Mikhailovskii E. I., Tovstik P. E.,
Chernykh K. F., Shamina V. A. Obshchaia nelineinaia
teoriia uprugikh obolochek [General nonlinear theory
of elastic shells]: ed. K. F. Chernyh, S. A. Kabrica.
St. Petersburg, St. Petersburg Press, 2002, 388 p. (in
Russian).
19. Chapelle D., Bathe K. J. The Finite Element Analysis
of Shells — Fundamentals. New York, Springer, 2011,
Vol. XV, 410 p.
20. Mikhailovskii E. I. Klassicheskaia teoriia obolochek
[The classical theory of shells]. Vestnik Syktyvkarskogo
universiteta. Ser. 1.: Math. Mech. Inform., 2006, no. 6,
pp. 123–164 (in Russian).
21. Lebedev L. P., Cloud M. J, Eremeyev V. A. Advanced
Engineering Analysis: Calculus of Variations and
Functional Analysis with Applications in Mechanics.
New Jersey, World Scientific, 2012. 499 p.
22. Zhilin P. A. Prikladnaia mekhanika. Osnovy teorii
obolochek [Applied Mechanics. Foundations of the Theory
of Shells]. St. Petersburg, St. Petersburg State Polytech.
Univer. Press, 2006, 167 p. (in Russian).
23. Lizarev A. D., Rostanina N. B. Kolebaniia metal-
lopolimernykh i odnorodnykh sfericheskikh obolochek
[Vibration in metal- and homogeneous spherical shells].
Minsk, Nauka i tekhnika, 1984, 192 p. (in Russian).
24. Senitskii Yu. E., Lychev S. A. Dinamika trekhsloinykh
sfericheskikh obolochek nesimmetrichnoi struktury [The
dynamics of three-layer spherical shells asymmetric
structure]. Trudy XVIII mezhdunarodnoi konferentsii po
teorii obolochek i plastin. Saratov, 1997, vol. 1, pp. 47–52
(in Russian).