Cite this article as:
Gadzhimirzaev R. M. The Fourier Series of the Meixner Polynomials Orthogonal with Respect to the Sobolev-type Inner Product. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2016, vol. 16, iss. 4, pp. 388-395. DOI: https://doi.org/10.18500/1816-9791-2016-16-4-388-395
The Fourier Series of the Meixner Polynomials Orthogonal with Respect to the Sobolev-type Inner Product
In this paper we consider the system of discrete functions {ϕr,k(x)} ∞ k=0 , which is orthonormal with respect to the Sobolev-type inner product hf, gi = Xr−1 ν=0 ∆ ν f(−r)∆ν g(−r) + X t∈Ωr ∆ r f(t)∆r g(t)µ(t), where µ(t) = q t (1−q), 0 < q < 1. It is shown that the shifted classical Meixner polynomials © M−r k (x + r) ª∞ k=r together with functions n (x+r) [k] k! or−1 k=0 form a complete orthogonal system in the space l2,µ(Ωr) with respect to the Sobolev-type inner product. It is shown that the Fourier series on Meixner polynomials © akM−r k (x + r) ª∞ k=r (ak— normalizing factors), orthonormal in terms of Sobolev, is a special case of mixed series on Meixner polynomials. Some new special series on Meixner orthogonal polynomials Mα k (x) with α > −1 are considered. In the case when α = r these special series coincide with mixed series on Meixner polynomials M0 k (x) and Fourier series on the system © akM−r k (x + r) ª∞ k=r orthonormal with respect to the Sobolev-type inner product.
1. Area I., Godoy E., Marcellan F. Inner products involving differences : the Meixner – Sobolev polynomials. J. Differ. Equ. Appl., 2000, vol. 6, iss. 1, pp. 1–31.
2. Marcellan F., Xu Y. On Sobolev orthogonal polynomials. Expositiones Mathematicae, 2015, vol. 33, iss. 3, pp. 308–352. DOI: https://doi.org/10.1016/j.exmath.2014.10.002.
3. Perez T. E. , Pinar M. A. , Xu Y. Weighted Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory, 2013, vol. 171, pp. 84–104. DOI: https://doi.org/10.1016/j.jat.2013.03.004.
4. Delgado A. M., Fernandez L., Lubinsky D. S., Perez T. E., Pinar M. A. Sobolev orthogonal polynomials on the unit ball via outward normal derivatives. J. Math. Anal. Appl., 2016, vol. 440, iss. 2, pp. 716–740. DOI: https://doi.org/10.1016/j.jmaa.2016.03.041.
5. Fernandez L., Marcell an F., Perez T. E., Pinar M. A., Xu Y. Sobolev orthogonal polynomials on product domains. J. Comput. Appl. Math., 2015, vol. 284, pp. 202–215. DOI: https://doi.org/10.1016/j.cam.2014.09.015.
6. Lopez G., Marcell an F., Van Assche W. Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner-product. Constr. Approx., 1995, vol. 11, iss. 1, pp. 107–137. DOI: https://doi.org/10.1007/BF01294341
7. Gonchar A. A. On convergence of Pade approximants for some classes of meromorphic functions. Math. USSR-Sb., 1975, vol. 26, iss. 4, pp. 555–575. DOI: https://doi.org/10.1070/SM1975v026n04ABEH002494.
8. Sharapudinov I. I. Approximation properties of the operators Yn+2r(f) and of their discrete analogs. Math. Notes, 2002, vol. 72, iss. 5, pp. 705–732. DOI: https://doi.org/10.1023/A:1021421425474.
9. Sharapudinov I. I. Smeshannye rjady po ortogonal’nym polinomam. Teorija i prilozhenija [Mixed series of orthogonal polynomials. Theory and Applications]. Makhachkala, Dagestan Scientific Center RAS, 2004. 276 p. (in Russian).
10. Sharapudinov I. I. Mixed series of Chebyshev polynomials orthogonal on a uniform grid. Math. Notes, 2005, vol. 78, iss. 3, pp. 403–423. DOI: https://doi.org/10.1007/s11006-005-0139-3.
11. Sharapudinov I. I. Approximation properties of mixed series in terms of Legendre polynomials on the classes Wr . Sb. Math., 2006, vol. 197, no. 3, pp. 433–452. DOI: https://doi.org/10.1070/SM2006v197n03ABEH003765.
12. Sharapudinov I. I. Approximation properties of the Valle – Poussin means of partial sums of a mixed series of Legendre polynomials. Math. Notes, 2008, vol. 84, iss. 3–4, pp. 417–434. DOI: https://doi.org/10.1134/S0001434608090125.
13. Gadzhieva Z. D. Smeshannye riady po polinomam Meiksnera : Diss. ... kand. fiz.-mat. nauk [Mixed series of Meixner polynomials : Diss. phys. and math. sci.]. Saratov State Univ., Saratov, 2004. 103 p. (in Russian).
14. Sharapudinov I. I. Special (mixed) series of the classical Laguerre polynomials and some of their applications. Poriadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniia : tez. dokl. XII Mezhdunar. nauch. konf. [Sequential analysis and related questions of mathematical modeling: Book of Abstracts of the XII Intern. Sci. Conf.] (village Tsey, 12–18 July 2015 ). Vladikavkaz, UMI VSC RAS, pp. 48–49 (in Russian).