special series

The Fourier Series of the Meixner Polynomials Orthogonal with Respect to the Sobolev-type Inner Product

In this paper we consider the system of discrete functions {ϕr,k(x)} ∞ k=0 , which is orthonormal with respect to the Sobolev-type inner product hf, gi = Xr−1 ν=0 ∆ ν f(−r)∆ν g(−r) + X t∈Ωr ∆ r f(t)∆r g(t)µ(t), where µ(t) = q t (1−q), 0 < q < 1. It is shown that the shifted classical Meixner polynomials © M−r k (x + r) ª∞ k=r together with functions n (x+r) [k] k! or−1 k=0 form a complete orthogonal system in the space l2,µ(Ωr) with respect to the Sobolev-type inner product.

Discrete Transform with Stick Property Based on {sinx sinkx} and Second Kind Chebyshev Polynomials Systems

In this paper we introduce the discrete series with the «sticking»-property of the periodic ({sinx sinkx} system) and non-periodic (using the system of the second kind of Chebyshev polynomials Uk(x)) cases. It is shown that series of the system {sinx sinkx}
have an advantage over cosine Fourier series because they have better approximation properties near the bounds of the [0, π] segment. Similarly discrete series of the system Uk(x) near the bound of the [−1, 1] approximates given function significantly