Cite this article as:

Glukhova O. E., Dol A. V., Kolesnikova A. S., Shunaev V. V. The new approach to investigation of multilayer graphene mechanical properties by the finite-element method . Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2014, vol. 14, iss. 1, pp. 73-77. DOI: https://doi.org/10.18500/1816-9791-2014-14-1-73-77


Language: 
Russian
Heading: 
UDC: 
539.32

The new approach to investigation of multilayer graphene mechanical properties by the finite-element method

Abstract: 

A new approach to investigate the mechanical properties of multilayer graphene was suggested. The method is based on the idea that the van der Waals interaction between the graphene sheets can be simulated by a fictitious layer of continuum. The stress-strain state of multilayer graphene is described by stationary equations of Navier–Lame. This approach has been successfully tested on graphene deflection. The graphene layers were considered as linear-elastic material. For each part of the curve that approximates the dependence of the graphene deflection on the applied force, corresponding elastic constants of graphene layers were found.

References
1. Gil A. J., Adhikari S., Scarpa F., Bonet J. The formation of wrinkles in single-layer graphene sheets under
nanoindentation. J. Phys. Condens. Matter., 2010, vol. 22,
no. 14, pp. 145302-1–145302-6. DOI: 10.1088/0953-8984/22/14/145302. 2. Wang Z., Laetitia P., Jamil E. Deflection of suspended
graphene by a transverse electric field. Physical Review B., 2009, vol. 81, iss. 15, pp. 155405-1–155405-5.
3. Glukhova О. Е., Shunaev V. V. Investigation of the
tensile strength of mono-and bilayer graphene J. Nano
and microsystem technique, 2012, no. 7, pp. 25–29 (inRussian).
4. Lee C., Wei X., Li Q., Carpick R., Kysar J. W., Hone J.Elastic and frictional properties of graphene. Physica
Status Solidi, 2009, vol. 246, no. 11–12, pp. 2562—2567.
5. Rouhi S., Ansari R. Atomistic finite element model
for axial buckling and vibration analysis of single-layered
graphene sheets. Physica E : Low-dimensional Systemsand Nanostructures, 2012, vol. 44, iss. 4, pp. 764–772.
6. Mikhailov S. Physics and Applications of Graphene – Theory. Rijeka, Croatia, InTech, 2011, 534 p.
7.Nahas M. N., Abd-Rabou M. Finite element modeling of carbon nanotubes. Intern. J. of Mechanical and Mechatronics IJMME-IJENS, 2010, vol. 10, no. 3, pp. 19–24.
Short text (in English): 
Full text: