finite element method

Studying of Elastoplastic Properties of Coal Specimens Using Indentation Technique

A numerical study on elsatoplastic properties in problem of coals specimen nanoindentation by Berkovich pyramid is presented. The stress-strain state of specimen during indentation is calculated using finite element method including complex elastoplastic behaviour on the basis of Drucker-Prager model. The effective axisymmetrical indenter of cone shape is introduced and used for the simulation. The influence of basic geometrical and material parameters of the solid model on the indentation curve is studied. In addition, some new form of indentation curve approximation is proposed.

Hemodynamics and Mechanical Behavior of Pathologically Tortuous Carotid Arteries

The numerical analysis of blood flow through anatomically real healthy and pathologically tortuous bifurcation of human carotid was carried out. Experimental velocity field data in carotid bifurcation were obtained using noninvasive technology. 3D computer models based on computer tomogram were built. The material of the wall is assumed to be linear isotropic.

The new approach to investigation of multilayer graphene mechanical properties by the finite-element method

A new approach to investigate the mechanical properties of multilayer graphene was suggested. The method is based on the idea that the van der Waals interaction between the graphene sheets can be simulated by a fictitious layer of continuum. The stress-strain state of multilayer graphene is described by stationary equations of Navier–Lame. This approach has been successfully tested on graphene deflection. The graphene layers were considered as linear-elastic material.