Cite this article as:

Antonov S. Y., Antonova A. V. To Chang Theorem. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 3, pp. 247-250. DOI: https://doi.org/10.18500/1816-9791-2015-15-3-247-251


Language: 
Russian
Heading: 
UDC: 
512

To Chang Theorem

Abstract: 

Multilinear polynomials H (¯x, ¯y) and R(¯x, ¯y), the sum of which is the Chang polynomial F(¯x, ¯y) have been introduced in this paper. It has been proved by mathematical induction method that each of them is a consequence of the standard polynomial S−(¯x). In particular it has been shown that the double Capelli polynomial of add degree C2m−1(¯x, ¯y) is also a consequence of the polynomial S−m(¯x, ¯y). The minimal degree of the polynomial C2m−1(¯x, ¯y) in which it is a polynomial identity of matrix algebraMn(F) has been also found in the paper. The results obtained are the transfer of Chang’s results over to the double Capelli polynomials of add degree.

References
  1. Chang Q. Some consequences of the standard polynomial // Proc. Amer. Math. Soc. 1988. Vol. 104, № 3. P. 707–710.  
  2. Pierce R. Associative Algebras. N.Y. : SpringerVerlag, 1982. 542 p.
  3. Amitsur S. A., Levitzki J. Minimal identities for algebras // Proc. Amer. Math. Soc. 1950. Vol. 1, № 4. P. 449–463.
  4. Антонов С. Ю. Наименьшая степень тождеств подпространства M(m,k) 1 (F) матричной супералгебры M(m,k)(F) // Изв. вузов. Математика. 2012. № 11. С. 3–19.
  5. Domokos M. A generalization of a theorem of Chang // Commun. Algebra. 1995. Vol. 23, № 12. P. 4333–4342.

 

Full text:
105