asymptotic methods.

An Asymptotic Model for the Far-Field of Rayleigh Wave in Multilayered Plate

An asymptotic model is proposed, which allows to calculate farfield of Rayleigh wave in an infinite multilayered plate subjected to non-stationary surface load. The model is derived by using of the standard asymptotic techniques. As a result, a system of two onedimensional integro-differential equations (head system) is obtained, which describes the propagation of Rayleigh waves along the plate surfaces. For the decaying wave fields in layers the boundary problems for elliptic equations are obtained.

Asymptotic integration of dynamic elasticity theory equations in the case of multilayered thin shell

Asymptotic integration of elasticity theory 3D equations is fulfilled for the case of multilayered arbitrary-shaped thin-walled shells. The tangential and the transverse long-wave low-frequency approximations are constructed. The governing 2D equations are derived.