Образец для цитирования:
Письменный Р. Г. О РАЗЛОЖЕНИИ ЦЕЛОЙ ФУНКЦИИ КОНЕЧНОГО ПОРЯДКА НА ЭКВИВАЛЕНТНЫЕ МНОЖИТЕЛИ // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2009. Т. 9, вып. 1. С. 19-30. DOI: https://doi.org/10.18500/1816-9791-2009-9-1-19-30
О РАЗЛОЖЕНИИ ЦЕЛОЙ ФУНКЦИИ КОНЕЧНОГО ПОРЯДКА НА ЭКВИВАЛЕНТНЫЕ МНОЖИТЕЛИ
Статья содержит развитие известной теоремы И.Ф. Красичкова Терновского о расщеплении на случай уточненного порядка. При этом охватывается ситуация с нулевым порядком. Доказательство осуществляется по той же схеме и основано на факторизационной теореме Адамара.
1. Красичков-Терновский И.Ф. Инвариантные подпространства аналитических функций. I. Спектральный синтез на выпуклых областях // Мат. сб. 1972. Т. 87(129), № 4. С. 459–489.
2. Азарин В.С. О разложении целой функции конечного порядка на сомножители, имеющие заданный рост // Мат. сб. 1973. Т. 90, № 2. С. 229–230.
3. Юлмухаметов Р.С. Аппроксимация субгармонических функций // Analysis Mathematica. 1985. Т. 11, № 3. С. 257–520.
4. Красичков И.Ф. Сравнение целых функций конечного порядка по распределению их корней // Мат. сб. 1966. Т. 70 (112), № 2. С. 198–230.