оператор Штурма–Лиувилля

Численное решение обратной задачи для оператора Штурма–Лиувилля с разрывным потенциалом

В статье рассматривается дифференциальный оператор Штурма–Лиувилля с потенциалом, имеющим конечное число точек разрыва первого рода. Конечной целью является численное восстановление потенциала такого вида. Основной результат представленной статьи — доказанная теорема и процедура, указывающие способ получения характеристик разрыва из начальных данных.

Обратная задача для оператора Штурма–Лиувилля на полуоси с неинтегрируемой особенностью внутри интервала

В статье исследуется обратная задача восстановления оператора Штурма–Лиувилля на полуоси с неинтегрируемой особенностью типа Бесселя внутри интервала по заданной функции Вейля. Получена процедура решения, доказана единственность такого восстановления, а также получены необходимые и достаточные условия разрешимости обратной задачи. 

Необходимые и достаточные условия разрешимости обратной задачи для оператора штурма–лиувилля на конечном отрезке с неинтегрируемой особенностью внутри интервала

 В данной статье исследуется обратная задача спектрального анализа восстановления оператора Штурма–Лиувилля на конечном отрезке с неинтегрируемой особенностью типа Бесселя внутри интервала по заданным спектральным данным. Получена конструктивная процедура решения обратной задачи, доказана единственность восстановления оператора по заданным спектральным данным, а также получены необходимые и достаточные условия разрешимости данной обратной задачи.