Математика

О существовании континуального замкнутого U -множества

В данной работе рассматривается система характеров на группе Виленкина и изучаются множества единственности (U -множества) для рядов по системе характеров группы Виленкина. Доказывается достаточное условие для U-множества на группе Виленкина и строится континуальное замкнутое множество единственности на группе Виленкина для произвольной образующей последовательности.

Об обратной периодической задаче для центрально-симметричных потенциалов

Исследуется обратная спектральная задача для операторов Штурма–Лиувилля на конечном интервале с периодическими краевыми условиями в центрально-симметричном случае, когда потенциал симметричен относительно середины интервала. Обсуждается постановка обратной задачи, приводится алгоритм ее решения, а также необходимые и достаточные условия разрешимости этой нелинейной обратной задачи.

Факторизация целых симметричных функций экспоненциального типа

Пусть π — целая функция минимального типа при порядке 1. Целая функция F называется π-симметричной, если она представляется в видекомпозиции f ◦π,гдеf — целая функция. Встатье рассматривается следующий вопрос: можноли всякую целую π-симметричную функцию экспоненциального типа представить в виде произведения двух близких по росту функций, каждая из которых сама является целой π-симметричной функцией? На этот вопрос получен утвердительный ответ, но при условии подчинения функции π некоторым ограничениям.

Специальные вейвлеты на основе полиномов Чебышева второго рода

В работе рассмотрена ортогональная система вейвлетов и скалярных функций, основанных на полиномах Чебышева второго рода и их нулях. На их базе построена полная ортонормированная система функций. Показан недостаток в аппроксимативных свойствах частичных сумм соответствующего вейвлет-ряда, связанный со свойствами самих полиномов Чебышева и заключающийся в существенном ухудшении скорости их сходимости к исходной функции на концах отрезка ортогональности.

О новом подходе к решению краевой задачи Римана с условием на луче в случае бесконечного индекса

Для решения однородной краевой задачи Римана с бесконечным индексом и условием на луче предлагается новый подход, основанный на приведении рассматриваемой задачи к соответствующей задаче с условием на действительной оси и конечным индексом.

Обоснование метода Фурье в смешанной задаче для волнового уравнения с ненулевой начальной скоростью

В статье методом контурного интегрирования резольвенты оператора, порожденного спектральной задачей, соответствующей смешанной задаче для волнового уравнения с комплексным потенциалом, дается обоснование метода Фурье двух смешанных задач с нулевой начальной функцией и ненулевой начальной скоростью. Краевые условия таковы, что эти две задачи вместе со смешанной задачей с закрепленными концами исчерпывают весь класс смешанных задач с указанными начальными условиями, для которых оператор соответствующей спектральной задачи в методе Фурье имеет регулярные краевые условия.

Исследование интегродифференциальных уравнений фильтрации

В предлагаемой статье для исследования процесса зарастания отверстий в решетчатой структуре, играющей роль фильтра, использован стохастический подход. Сформулирована и исследована система кинетических уравнений, моделирующих процесс диффузной фильтрации на основе указанного подхода. Доказана теорема существования и единственности решения применительно к случаю непрерывной плотности. Получены представления решения в виде равномерно сходящегося и асимптотического рядов, а также изучен характер его поведения на бесконечности.