Механика

Решение задачи с оптимальной переориентации орбиты космического аппарата с использованием кватернионных уравнений ориентации орбитальной системы координат

С помощью принципа максимума Понтрягина и кватернионных уравнений решается задача оптимальной переориентации орбиты космического аппарата (КА). Управление (вектор реактивной тяги, ортогональной плоскости орбиты) ограничено по модулю. Функционал, определяющий качество процесса управления, равен взвешенной сумме времени переориентации орбитыКАи импульса управления за время переориентации орбиты или затрат энергии. Сформулированы дифференциальные краевые задачи переориентации орбиты КА.

Аналитическое решение линейных дифференциальных уравнений ошибок БИНС, функционирующей в нормальной географической системе координат, для случая движения вдоль экватора с постоянной скоростью на постоянной высоте

В работе получено в явном виде аналитическое решение линейных дифференциальных уравнений ошибок бесплатформенной инерциальной навигационной системы (БИНС), функционирующей в нормальной географической системе координат, для случая движения с постоянной скоростью и на постоянной высоте вдоль земного экватора.

Явные модели распространения изгибных краевых волн в тонких полубесконечных ортотропных пластинах

В работе приведен анализ распространения изгибных краевых волн в тонких пластинах. Решены задачи о колебании полубесконечных пластин, сделанных из ортотропных материалов. Анализ особенностей распространения краевых изгибных волн проведен с использованием явных параболических эллиптических моделей, выделяющих вклад таких волн в общую деформацию пластины.

Явные модели распространения изгибных краевых и интерфейсных волн в тонких изотропных пластинах

В статье приведены общие решения задач о колебаниях тонких изотропных полубесконечных пластин. Приведены основные принципыпостроения явных параболических эллиптических моделей, описывающих распространение краевых и интерфейсных изгибных волн. Построенные модели позволяют выделить вклад локализованных изгибных краевых и интерфейсных волн в общую деформацию пластин, вызванную приложенным на торце или в месте стыка нагружением. Также они отражают двойственную параболическую эллиптическую природу изгибных краевых и интерфейсных волн.

Антисимметричные кромочные волны высшего порядка в пластинах

Исследуются поверхностные волны, распространяющиеся вдоль кромки пластины (кромочные волны). Рассматриваются антисимметричные колебания пластины, лицевые поверхности которой свободны от напряжений. Для описания колебаний пластины применяются трехмерные уравнения теории упругости, что позволяет изучить кромочные волны высшего порядка. Выполнен асимптотический анализ задачи, показывающий, что в пластине существует бесконечное счетное множество кромочных волн высшего порядка.